螺旋對(duì)稱流厭氧膜生物反應(yīng)器運(yùn)行特性及膜污染研究
發(fā)布時(shí)間:2018-06-11 21:28
本文選題:螺旋對(duì)稱流 + 厭氧膜生物反應(yīng)器; 參考:《東華大學(xué)》2017年碩士論文
【摘要】:近年來(lái),我國(guó)城市污水排放量的大幅增加已嚴(yán)重污染水體環(huán)境。厭氧膜生物反應(yīng)器(An MBR)作為厭氧生物處理技術(shù)與膜分離技術(shù)相結(jié)合的一種新型廢水處理技術(shù),既具有厭氧生物處理的高效性,又具有膜分離的出水水質(zhì)穩(wěn)定性,有望實(shí)現(xiàn)高濃度進(jìn)水低濃度出水的雙重目標(biāo),已被越來(lái)越多地用于城市污水的治理中。鑒于此,本課題組在已有螺旋對(duì)稱流厭氧專利反應(yīng)器的基礎(chǔ)上,通過(guò)外置平板膜組件開發(fā)了一種新型外置浸沒式螺旋對(duì)稱流厭氧膜生物反應(yīng)器(SSS-An MBR)(專利申請(qǐng)?zhí)?CN201610325276.6)。論文較系統(tǒng)地研究了SSS-An MBR啟動(dòng)期和穩(wěn)定期的運(yùn)行性能;構(gòu)建了SSS-An MBR系統(tǒng)的設(shè)計(jì)與操作優(yōu)化模型;探析了膜污染特征及影響因素。獲得如下主要結(jié)論:(1)啟動(dòng)期和穩(wěn)定期的運(yùn)行:a、啟動(dòng)期歷時(shí)33天,反應(yīng)器運(yùn)行穩(wěn)定、高效,p H在6.78-7.44之間,揮發(fā)性脂肪酸(VFA)幾乎檢測(cè)不到,未發(fā)生酸化現(xiàn)象,堿度(ALK)在1264.01-1639.64mg/L,VFA/ALK在0.001-0.016,反應(yīng)器對(duì)化學(xué)需氧量(COD)的去除率穩(wěn)定在90.27%-95.35%,平均去除率85.75%;b、進(jìn)入穩(wěn)定期,有沼氣曝氣狀態(tài)的運(yùn)行效果和穩(wěn)定性均優(yōu)于無(wú)沼氣曝氣狀態(tài)。前者有機(jī)負(fù)荷(OLR)和COD去除率分別達(dá)2.28kg COD/(m3·d)和98.24%,均高于后者的2.13kg COD/(m3·d)和97.58%;前者穩(wěn)定性稍高于后者,前者平均總COD去除率的變異系數(shù)(CV)值為0.78低于后者的0.89;c、改變進(jìn)水濃度對(duì)膜出水影響不大:隨著進(jìn)水濃度(COD)的提高,階段1(平均進(jìn)水COD=2300 mg/L)SSSAB的出水平均COD(160mg/L)及其CV(0.16)較之階段2、3(平均進(jìn)水COD分別為4500和8000mg/L)有一定程度的升高,出水水質(zhì)和穩(wěn)定性有所下降,但膜出水COD及其CV相差不大。(2)SSS-An MBR系統(tǒng)操作及優(yōu)化模型:反應(yīng)器體積V、進(jìn)水流量Q和進(jìn)水COD濃度X三者之間的關(guān)系為(?),膜組件面積A與Q之間的關(guān)系為(?),可用于指導(dǎo)同類型的An MBR的設(shè)計(jì)和操作優(yōu)化。(3)膜污染特征及影響因素研究結(jié)果:ⅰ、沼氣曝氣對(duì)膜污染影響:a、沼氣曝氣能夠有效延緩膜污染。有沼氣曝氣運(yùn)行較之無(wú)沼氣曝氣運(yùn)行,各階段跨膜壓差(TMP)的增長(zhǎng)速率(分別為0.14、1.6和5.5 k Pa/d)均較緩慢,達(dá)到相同的TMP時(shí)運(yùn)行周期是無(wú)沼氣曝氣的2倍。前者在膜表面形成密而薄的凝膠狀物質(zhì),后者在膜表面形成疏而厚的泥餅狀物質(zhì)。b、無(wú)沼氣曝氣時(shí),膜表面總固體(19.03 g/L)較高是膜污染的主要原因;沼氣曝氣時(shí),膜表面S-EPS(89.38 mg TOC·(g VSS)-1)較高及較小的蛋白質(zhì)與多糖的比值(PN/PS)值是膜污染的主要原因。ⅱ、進(jìn)水濃度對(duì)膜污染影響:a、膜污染包括緩慢增長(zhǎng)期和快速增長(zhǎng)期:階段1的緩慢增長(zhǎng)期TMP的增速慢、時(shí)間長(zhǎng)(K11=為0.188 k Pa/d,T=13d);快速增長(zhǎng)期TMP的增速快、時(shí)間短(K12=4.935 k Pa/d,T=15d);而階段2、3的緩慢增長(zhǎng)期和快速增長(zhǎng)期,TMP的增長(zhǎng)情況相接近。b、改變進(jìn)水濃度所致的混合液粘度變化對(duì)膜污染影響較大:隨著進(jìn)水濃度的增大,混合液粘度越大,將增加TMP、增強(qiáng)黏附性、削弱曝氣沖刷效果和降低絮體的上升速度等;同時(shí)總EPS的升高主要由S-EPS+LB-EPS含量的升高引起,致使混合液的粘度也有上升趨勢(shì)。PN與混合液粘度具有一定相關(guān)性外,PS及PN/PS的趨勢(shì)與混合液粘度未發(fā)現(xiàn)明顯相關(guān)性。
[Abstract]:In recent years, the large increase of urban sewage discharge in China has seriously polluted the water environment. As a new type of wastewater treatment technology, anaerobic membrane bioreactor (An MBR), as a combination of anaerobic biological treatment technology and membrane separation technology, has the efficiency of anaerobic biological treatment and the stability of the water quality of membrane separation, which is expected to be realized. In view of this, a new type of external submerged spiral symmetric flow anaerobic membrane bioreactor (SSS-An MBR) has been developed on the basis of the existing spiral symmetric flow anaerobic patent reactor. Application number: CN201610325276.6). The paper systematically studied the operating performance of the start and stable period of SSS-An MBR; constructed the design and operation optimization model of SSS-An MBR system; analyzed the characteristics of the membrane fouling and the influencing factors. The following main conclusions were obtained: (1) the start and stable operation: a, the start period of 33 days, and the stable operation of the reactor. Determined, high efficiency, P H between 6.78-7.44, volatile fatty acid (VFA) almost not detected, no acidification, alkalinity (ALK) in 1264.01-1639.64mg/L, VFA/ALK in 0.001-0.016, the reactor for chemical oxygen demand (COD) removal rate stable in 90.27%-95.35%, the average removal rate of 85.75%; B, into the stable period, the operation effect of biogas aeration state and the operation effect and The stability is better than no biogas aeration state. The former organic load (OLR) and COD removal rates are 2.28kg COD/ (M3. D) and 98.24% respectively, which are higher than the latter's 2.13kg COD/ (M3. D) and 97.58%; the former is slightly more stable than the latter, and the variation coefficient of the average total COD removal rate (CV) is 0.78 lower than the latter 0.89. Water has little effect: with the increase of influent concentration (COD), the average COD (160mg/L) and CV (0.16) of the effluent of stage 1 (average influent COD=2300 mg/L) and CV (0.16) are higher than that of the stage 2,3 (the average influent COD is 4500 and 8000mg/L), and the water quality and stability of the effluent decrease, but the difference between the COD and the CV is not much. (2) System operation and optimization model: the relationship between the reactor volume V, the influent flow Q and the influent COD concentration X three is (?), the relationship between the membrane component area A and Q is (?), can be used to guide the design and operation optimization of the same type of An MBR. (3) research results of membrane fouling characteristics and influencing factors: the effect of methane aeration on membrane pollution: A, biogas aeration The growth rate of cross membrane pressure difference (TMP) at each stage (0.14,1.6 and 5.5 K Pa/d, respectively) is slower than that of methane aeration, and the operation cycle of the same TMP is 2 times that of no biogas aeration. The former is dense and thin on the surface of the membrane, and the latter is formed on the surface of the membrane. When there is no biogas aeration, the total solid (19.03 g/L) of membrane surface is the main cause of membrane fouling, and the ratio of S-EPS (89.38 mg TOC. (g VSS) -1) on the membrane surface and the ratio of small protein and polysaccharide (PN/PS) are the main causes of membrane fouling when the biogas aeration is aerated. II. The influence of influent concentration on membrane pollution: A, membrane fouling package The slow growth period and the rapid growth period: the slow growth period of phase 1 is slow, the time is long (K11= is 0.188 K Pa/d, T=13d); the fast growth period TMP is fast, the time is short (K12=4.935 K Pa/d, T=15d), and the stage 2,3 slow growth period and the fast growth period, the TMP growth is close to TMP, and changes the mixture viscosity caused by the influent concentration. Degree change has great influence on membrane fouling: with the increase of influent concentration, the greater the viscosity of the mixture, it will increase TMP, enhance adhesion, weaken the effect of aeration and reduce the rising speed of the floc, and the increase of the total EPS is mainly caused by the increase of S-EPS+LB-EPS content, resulting in the rising trend of the viscosity of the mixture and the viscosity of the mixture. There was no correlation between the trend of PS and PN/PS and the viscosity of the mixture.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 王作新;曹維良;張敬暢;嚴(yán)繼民;張啟元;;螺旋對(duì)稱(n_1)構(gòu)型高分子的LCAO/TO-LCTO/HO-LCHO/PO處理——Ⅰ.(2_1)螺旋對(duì)稱高分子能帶的計(jì)算[J];化學(xué)學(xué)報(bào);1985年03期
2 ;[J];;年期
相關(guān)重要報(bào)紙文章 前1條
1 張德明;長(zhǎng)子縣兩農(nóng)民的數(shù)學(xué)論文在美國(guó)國(guó)際中文期刊發(fā)表[N];長(zhǎng)治日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前1條
1 王建東;基于不變特征提取及匹配技術(shù)的螺旋對(duì)稱性檢測(cè)問(wèn)題研究[D];天津大學(xué);2014年
相關(guān)碩士學(xué)位論文 前1條
1 李崗;螺旋對(duì)稱流厭氧膜生物反應(yīng)器運(yùn)行特性及膜污染研究[D];東華大學(xué);2017年
,本文編號(hào):2006753
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2006753.html
最近更新
教材專著