油田高含鹽污水噴霧干燥的數(shù)值模擬研究
本文選題:油田高含鹽污水 + 噴霧干燥; 參考:《中國科學(xué)院大學(xué)(中國科學(xué)院工程熱物理研究所)》2017年碩士論文
【摘要】:我國大部分油田已進入開采的中后期,采出液含水量高達80%,使得油田污水的處理量迅速增加。其中,油田污水含鹽量已高達上萬或數(shù)十萬mg/L,直接外排和回注都會對周邊環(huán)境造成嚴重破壞,其脫鹽處理技術(shù)的開發(fā)研究已成為油田企業(yè)亟待解決的任務(wù)之一。噴霧干燥技術(shù)已在化工、食品、醫(yī)藥等行業(yè)得到廣泛應(yīng)用,在工農(nóng)業(yè)生產(chǎn)領(lǐng)域中占有極為重要的地位,與傳統(tǒng)的油田污水處理技術(shù)相比,具有設(shè)備簡單、水分蒸發(fā)迅速、操作控制方便、適宜大規(guī)模生產(chǎn)等優(yōu)點。本文基于噴霧干燥技術(shù),提出了油田高含鹽污水噴霧干燥的處理方法。目前尚無噴霧干燥技術(shù)處理油田高含鹽污水的工程應(yīng)用實例,因此首次使用CFD針對油田高含鹽污水的噴霧干燥過程進行了深入地研究,探索了將噴霧干燥技術(shù)應(yīng)用于油田高含鹽污水處理的可行性,可為理論研究與工程實踐提供一定的參考依據(jù)。(1)針對含鹽量為7× 104mg/L的油田污水,設(shè)計了一套處理量為28.8kg/h的逆流型噴霧干燥器。在標準k-ε雙方程模型和DPM模型的框架下,基于歐拉-拉格朗日方法,描述了空氣與霧化液滴在干燥器內(nèi)相對運動及傳熱傳質(zhì)過程,對液滴蒸發(fā)過程進行了數(shù)值模擬,得到了設(shè)備內(nèi)部各流場分布。通過隨機軌道模型追蹤了液滴顆粒的運動軌跡及液滴NaCl濃度的變化。結(jié)果表明:污水液滴的噴入對空氣有明顯的擾動作用,近軸線區(qū)域擾動最大。離噴嘴越遠,速度分布越均勻。由于液滴群與逆流空氣的相互作用,在液滴群兩側(cè)形成了旋渦回流區(qū)。氣相溫度梯度在液滴群集中的中心軸線區(qū)域較大。沿軸線方向自上而下,溫度逐漸降低,水蒸氣含量逐漸升高,液滴蒸發(fā)速率呈增加趨勢。液滴一般在3到7秒便可蒸發(fā)完畢,在該干燥器結(jié)構(gòu)及工況條件下,設(shè)備內(nèi)蒸發(fā)效率可達到 58.9%。(2)研究了入口空氣流速、入口空氣溫度、噴霧錐角、液滴直徑等操作參數(shù)對干燥器內(nèi)速度場、溫度場和液滴蒸發(fā)特性的影響規(guī)律。得出以下結(jié)論:入口空氣流速和入口空氣溫度是影響蒸發(fā)速率的關(guān)鍵操作參數(shù)。提高入口空氣流速和入口空氣溫度,均可加快液滴蒸發(fā)。但是受液滴顆粒沉降速度的限制,在算例的液滴直徑及污水流量條件下,入口空氣流速達到0.4m/s后,流速的提高對蒸發(fā)速率的提高量顯著減小。當(dāng)入口空氣溫度達到313K后,再提高空氣溫度,對蒸發(fā)速率的提高作用不大。隨噴霧錐角的增大,蒸發(fā)速率略微提高。液滴越細化,蒸發(fā)速率越高。(3)由于在油田企業(yè)的實際工程應(yīng)用中,需要考慮油田開采現(xiàn)場的場地限制及裝置搭建的方便性,因此基于逆流型噴霧干燥器的數(shù)值模擬方法,對并流型水平箱式結(jié)構(gòu)噴霧干燥器的污水噴霧蒸發(fā)特性也進行了研究,并對比分析了不同噴嘴布置方案的蒸發(fā)效果。進一步的,為了給實際工程方案的設(shè)定提供一定的參考依據(jù),根據(jù)中國石化石油勘探開發(fā)研究院在四川德陽的小型試驗所使用的箱體結(jié)構(gòu),研究了操作參數(shù)的最佳設(shè)置。為了解在四川德陽環(huán)境條件下何種工況的蒸發(fā)效果較好,采用正交試驗設(shè)計原理,對各環(huán)境工況下的箱式結(jié)構(gòu)進行了數(shù)值模擬研究。得出以下結(jié)論:在箱式結(jié)構(gòu)中,液滴群向右側(cè)有一定的偏移,速度場分布較不均勻,在箱體右下直角處存在不合理的旋渦回流區(qū)。由于在箱體左側(cè)入口處液滴與空氣的橫向交叉流動,使兩相摻混過程主要發(fā)生在箱體中部及后部。在該算例箱體體積下,單噴嘴的布置方案是最優(yōu)方案。當(dāng)入口空氣流速較小,為0.4m/s時,右側(cè)引風(fēng)方式與上側(cè)引風(fēng)方式的流場分布差別不大;當(dāng)流速增加到0.6m/s及0.8m/s時,右側(cè)引風(fēng)方式優(yōu)于上側(cè)引風(fēng)。液滴直徑在20μm~150μm范圍內(nèi)時,最佳入口空氣流速為 0.4m/s 及 0.6m/s。0.4m/s 的流速適用于直徑 25μm、50μm、100μm、150μm的液滴,0.6m/s的流速適用于直徑100μm、150μm的液滴。通過正交試驗得出較好的環(huán)境工況為空氣溫度30℃、相對濕度60%、空氣流速0.6m/s、液滴直徑25μm或空氣溫度20℃、相對濕度40%、空氣流速0.6m/s、液滴直徑25μm。綜上,本文緊密結(jié)合了石油企業(yè)的實際需要,為噴霧干燥技術(shù)在油田高含鹽污水處理領(lǐng)域提供了一定的工程設(shè)計依據(jù),具有實踐指導(dǎo)作用。
[Abstract]:Most of the oil fields in our country have entered the middle and late period of mining. The water content of the extracted liquid is as high as 80%, which makes the treatment quantity of the oilfield sewage increase rapidly. Among them, the salt content of the oilfield sewage is up to tens of thousands or hundreds of thousands of mg/L. The direct outer row and reinjection will cause serious damage to the surrounding environment, and the development and research of the desalting treatment technology has become an oil field enterprise. One of the tasks to be solved urgently. The spray drying technology has been widely used in the industries of chemical industry, food and medicine. It occupies an important position in the field of industrial and agricultural production. Compared with the traditional oilfield sewage treatment technology, it has the advantages of simple equipment, rapid evaporation of water, convenient control and large scale production. Spray drying technology is used to treat the spray drying of high salt wastewater in oil field. At present, there is no spray drying technology to treat high salt wastewater in oil field. Therefore, the spray drying process of high salt water with high salt water in oil field is first studied by CFD, and the application of spray drying technology to oil field high is explored. The feasibility of the treatment of salt containing sewage can provide some reference for theoretical research and engineering practice. (1) a set of reverse flow spray dryer with a treatment amount of 28.8kg/h is designed for the oilfield sewage with a salt content of 7 x 104mg/L. Under the framework of the standard k- e double equation model and the DPM model, the Euler Lagrange method is described. The relative motion and heat and mass transfer process of the air and atomization droplets in the drier are numerically simulated and the distribution of each flow field inside the device is obtained. The trajectory of the droplets and the change of the NaCl concentration are traced by the random orbit model. The results show that the injection of the droplets is obviously disturbing to the air. The moving effect is the largest disturbance in the near axis region. The farther the nozzle is, the more uniform the velocity distribution is. The vortex reflux region is formed on both sides of the droplet group because of the interaction between the droplet group and the countercurrent air. The temperature gradient of the gas phase is larger in the center axis of the droplet cluster. The temperature gradually decreases along the axis direction, and the content of water vapor gradually decreases. The evaporation rate of the droplet is increasing. The droplet can be evaporated in 3 to 7 seconds. The evaporation efficiency in the dryer can reach 58.9%. (2) under the structure and working condition of the dryer. The air velocity, the inlet air temperature, the spray cone angle, the droplet diameter and the other operating parameters are applied to the velocity field, the temperature field and the droplet evaporation in the drier. The following conclusion is drawn: the inlet air velocity and inlet air temperature are the key operating parameters affecting the evaporation rate. Increasing the inlet air velocity and inlet air temperature can accelerate the droplet evaporation. However, the droplet sedimentation velocity is limited by the droplet diameter and the sewage flow condition. When the flow velocity reaches 0.4m/s, the increase of the velocity of the flow increases significantly. When the inlet air temperature reaches 313K and the air temperature is increased, the effect of the evaporation rate is little. With the increase of the spray cone angle, the evaporation rate is slightly improved. The more the droplet is refined, the higher the evaporation rate is. (3) due to the actual engineering of the oil field enterprise In use, it is necessary to consider the site limitation of the field and the convenience of the installation. Therefore, based on the numerical simulation of the reverse flow spray dryer, the evaporation characteristics of the sewage spray drier with the flow type horizontal box type spray dryer are also studied, and the evaporation effect of the different nozzle layout schemes is compared and analyzed. In order to provide some reference for the setting of practical project, according to the box structure used by the Sinopec petroleum exploration and Development Research Institute in Deyang, Sichuan, the optimum setting of operating parameters is studied. In order to understand the better evaporation effect in the conditions of Deyang environment in Sichuan, the orthogonal experiment design is adopted. The numerical simulation of box structure under various environmental conditions is carried out. The following conclusion is drawn: in the box structure, the droplet group has a certain deviation to the right, the distribution of the velocity field is not uniform, and there is an unreasonable vortex reflux area at right right angle of the box body. The two phase mixing process mainly occurs in the middle and rear of the box. Under the volume of the case case, the layout scheme of the single nozzle is the best. When the inlet air velocity is small, the flow field distribution of the right air guide and the upper side is not very different when the inlet air velocity is 0.4m/s. When the velocity is added to the 0.6m/s and the 0.8m/s, the right draft mode is superior to the upper air flow. When the diameter of the droplet is within the range of 20 m to 150 mu m, the flow velocity of the best inlet air flow velocity of 0.4m/s and 0.6m/s.0.4m/s is suitable for the droplets of 25 mu m, 50 mu m, 100 mu m, 150 mu m, and the flow rate of 0.6m/s is suitable for the droplets of 100 mu m and 150 mu m. The better ambient conditions are air temperature 30 and relative humidity 60% through orthogonal test. The air velocity 0.6m/s, the droplet diameter 25 / m or the air temperature 20, the relative humidity 40%, the air velocity 0.6m/s and the droplet diameter 25 mu m. combined, this paper closely combines the actual needs of the oil enterprises, and provides a certain engineering design basis for the spray drying technology in the field of high salt wastewater treatment in the oilfield, and has the practical guiding role.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院工程熱物理研究所)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X741
【相似文獻】
相關(guān)期刊論文 前10條
1 黃立新;周瑞君;A S Mujumdar;;噴霧干燥的研究進展[J];干燥技術(shù)與設(shè)備;2009年05期
2 豐田貞男;李煥珍;;噴霧干燥的工程放大[J];日用化學(xué)品科學(xué);1980年01期
3 李楨;噴霧干燥過程中相互關(guān)系的理論推導(dǎo)[J];化學(xué)世界;1964年01期
4 ;農(nóng)藥殺蟲瞇噴霧干燥[J];上;;1975年02期
5 馮爾健;;面磚坯粉的噴霧干燥處理法[J];陶瓷;1976年02期
6 董盛福;關(guān)于噴霧干燥及成品比重的體會[J];日化情報;1977年06期
7 ;噴霧干燥在中草藥劑型改革中的應(yīng)用[J];陜西化工;1977年03期
8 金世琳;;噴霧干燥及其在食品工業(yè)中的應(yīng)用[J];乳品工業(yè);1977年01期
9 ;噴霧干燥操作中的粘壁問題[J];化學(xué)工程;1978年05期
10 張瑞南;;粉末標樣的噴霧干燥制備新工藝[J];分析化學(xué);1978年04期
相關(guān)會議論文 前10條
1 王優(yōu)杰;徐德生;馮怡;趙立杰;阮克鋒;;利用數(shù)值模擬技術(shù)分析中藥噴霧干燥黏壁原因[A];2013年中國藥學(xué)大會暨第十三屆中國藥師周論文集[C];2013年
2 李克林;;噴霧干燥粒料連續(xù)壓制時的單重變化規(guī)律研究[A];2009(重慶)中西部第二屆有色金屬工業(yè)發(fā)展論壇論文集[C];2009年
3 黃偉歡;義建軍;;噴霧干燥法制備烯烴聚合催化劑載體[A];中國化工學(xué)會2008年石油化工學(xué)術(shù)年會暨北京化工研究院建院50周年學(xué)術(shù)報告會論文集[C];2008年
4 劉殿宇;;空氣相對濕度對噴霧干燥生產(chǎn)的影響[A];第三屆中國奶業(yè)大會論文集(下冊)[C];2012年
5 王志良;單金海;張宇;劉向云;;玻璃化轉(zhuǎn)變對中藥噴霧干燥過程和產(chǎn)品質(zhì)量的影響[A];2008年中國藥學(xué)會學(xué)術(shù)年會暨第八屆中國藥師周論文集[C];2008年
6 陳元元;王國恒;;離心壓力式噴霧干燥過程數(shù)學(xué)模擬研究[A];2004全國能源與熱工學(xué)術(shù)年會論文集(2)[C];2004年
7 莫玲;李竹青;陳劍;龐婕;樂國偉;施用暉;;噴霧干燥對牛奶蛋白質(zhì)氧化的影響[A];優(yōu)質(zhì)乳品與嬰幼兒健康:挑戰(zhàn)和解決方案專題研討會論文集[C];2011年
8 馮怡;劉怡;徐德生;;中藥提取物微囊化防潮技術(shù)及其機理研究[A];2006第六屆中國藥學(xué)會學(xué)術(shù)年會論文集[C];2006年
9 Mohammad Khalid Anwer;Suraj Prakash Agarwal;Asgar Ali;Yasmin Sultana;崔佳麗;劉建珍;游金坤;李鵬;李寶才;;黃腐酸和羥丙基-β-環(huán)糊精對阿司匹林分解的影響比較[A];2010中國腐植酸行業(yè)低碳經(jīng)濟交流大會暨第九屆全國綠色環(huán)保肥料(農(nóng)藥)新技術(shù)、新產(chǎn)品交流會論文集[C];2010年
10 崔云龍;劉杰;姬金紅;;噴霧干燥溫度對Bt制劑質(zhì)量的影響[A];全國生物防治學(xué)術(shù)討論會論文摘要集[C];1995年
相關(guān)重要報紙文章 前6條
1 路進寧 林祖聰;關(guān)注噴霧干燥技術(shù)應(yīng)用細節(jié)[N];中國醫(yī)藥報;2006年
2 于海春;了解可壓性影響因素 合理選用噴霧干燥乳糖[N];中國醫(yī)藥報;2006年
3 楊楊;QLY型噴霧干燥實驗機研制完成[N];中國石化報;2003年
4 ;噴霧干燥技術(shù)在中藥配方顆粒中的應(yīng)用體會[N];中國中醫(yī)藥報;2003年
5 武漢工業(yè)大學(xué) 王志輝;墻地磚生產(chǎn)過程中噴霧干燥的工藝控制[N];中國建材報;2002年
6 徐春容邋白娟;德眾藥業(yè):“德在藥中”的百年企業(yè)[N];中國醫(yī)藥報;2008年
相關(guān)博士學(xué)位論文 前2條
1 許建辰;口腔崩解給藥系統(tǒng)的研究[D];天津大學(xué);2008年
2 石曉峰;噴霧干燥法制備納米復(fù)合含能微球及性能表征[D];中北大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 楊曉菲;氨基酸對粉霧劑肺部沉積效率及晶型的影響[D];蘇州大學(xué);2015年
2 馬川川;奶粉氣流式噴霧干燥過程中粘壁現(xiàn)象的研究[D];齊魯工業(yè)大學(xué);2015年
3 李彤輝;發(fā)菜細胞多糖耦聯(lián)循環(huán)發(fā)酵研究[D];河南科技大學(xué);2015年
4 陳來蔭;薏米固體飲料的加工工藝研究[D];福建農(nóng)林大學(xué);2012年
5 李騫;Kefir粒菌相分析與植物乳軒菌發(fā)酵劑的制備[D];天津科技大學(xué);2011年
6 張志豐;亞高溫噴霧干燥實驗設(shè)備的開發(fā)[D];黑龍江東方學(xué)院;2015年
7 張麗茹;淮山全粉噴霧干燥制備及品質(zhì)研究[D];湖南農(nóng)業(yè)大學(xué);2015年
8 陳鵬;高分子輔助噴霧干燥—焙燒法制備納米級富鋰三元材料[D];華南理工大學(xué);2016年
9 孫曉磊;防控產(chǎn)毒真菌的深海細菌代謝產(chǎn)物研究[D];哈爾濱工業(yè)大學(xué);2016年
10 宋超洋;小米速溶粉的制備及其性質(zhì)研究[D];江南大學(xué);2016年
,本文編號:1917501
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1917501.html