中國中東部地區(qū)典型城市大氣細(xì)顆粒物中化學(xué)組成特征及來源解析研究
本文選題:中東部地區(qū) + PM_(2.5)。 參考:《南京大學(xué)》2017年碩士論文
【摘要】:隨著經(jīng)濟(jì)的快速發(fā)展和城市化的進(jìn)程不斷加快,我國中東部地區(qū)大氣污染持續(xù)惡化,大氣顆粒物尤其是大氣細(xì)顆粒物PM2.5對空氣質(zhì)量、氣候變化和人體健康造成嚴(yán)重的負(fù)面影響。本研究于2014年12月至2015年11月不同季節(jié)的代表性月份在我國中東部地區(qū)的5個典型城市,分別是北京、南京、武漢、太原和廣州進(jìn)行了大氣PM2.5的離線連續(xù)觀測,分析其質(zhì)量濃度污染特征。本研究同時分析了大氣PM2.5中水溶性無機(jī)離子、有機(jī)碳及元素碳的含量和時空變化特征,并利用主成分分析法對PM2.5中水溶性無機(jī)離子和碳組分進(jìn)行了來源解析。本研究成果旨在為政府制定有效的污染防控策略提供科學(xué)理論依據(jù)。研究結(jié)果如下:根據(jù)我國最新《空氣環(huán)境質(zhì)量標(biāo)準(zhǔn)》二級標(biāo)準(zhǔn)(GB 3095-2012,75μg/m3),南京和太原PM2.5污染嚴(yán)重,其次為武漢和北京;廣州污染最輕。5個城市全年P(guān)M2.5污染等級均以良和輕度污染天氣為主,總的百分比為67.7%~81.1%。污染源、區(qū)域大氣傳輸和氣象條件共同作用,導(dǎo)致PM2.5具有明顯的季節(jié)差異性。冬季和(或)秋季其PM2.5日均濃度變化波動范圍較大,且冬季PM2.5平均濃度最高,而春季和夏季變化趨勢較為平穩(wěn)。水溶性無機(jī)離子是大氣PM2.5的主要化學(xué)組分之一,總水溶性無機(jī)離子在PM2.5中所占百分比為38.5%(北京)、44.3%(南京)、49.0%(太原)、46.7%(武漢)、32.2%(廣州)。其中SO42-N03-和NH4+(簡稱SNA)是主要的水溶性無機(jī)離子種類,占總水溶性無機(jī)離子的74.6%(北京)、82.%(南京)、73.9%(太原)、85.2%(武漢)、86.2%(廣州)。SNA/PM2.5百分比的季節(jié)變化均表現(xiàn)為夏季和秋季較高,冬季和春季較低。北京和廣州PM2.5呈電中性,南京和太原PM2.5呈堿性,武漢PM2.5呈酸性。太原PM2.5中NH4+含量足以完全中和SO42-、NO3-和Cl-,而其他4個城市PM2.5中NH4+相對較為缺乏,其中南京和武漢NH4+僅能部分中和SO42-。北京移動排放源對大氣PM2.5污染的貢獻(xiàn)占主導(dǎo)地位。南京固定排放源和移動排放源對pM2.5的貢獻(xiàn)相當(dāng)。武漢、太原和廣州的固定排放源對其PM2.5的貢獻(xiàn)占主導(dǎo)。碳組分也是大氣PM2.5的主要成分之一,北京、太原、武漢和廣州的碳質(zhì)氣溶m((TCA)年均濃度分別為24.73μg/m3、34.79μg/m3、26.17μg/m3和16.85μg/m3,分別占PM2.5質(zhì)量濃度的34.4%、36.6%、30.3%和26.9%。PM2.5中有機(jī)碳(OC)年均濃度是元素碳(EC)的1.9~2.3倍。冬季PM2.5中OC和EC濃度最高,而夏季最低。北京、太原和武漢PM2.5中OC和EC具有相同的來源,而廣州OC和EC來源較為復(fù)雜。4個城市大氣PM2.5中OC/EC均大于2.0,表明均存在二次有機(jī)碳(SOC)污染。太原SOC年均濃度最高,為10.9μg/m3,在OC中所占百分比為69.0%;廣州SOC濃度最低,為4.0μg/m3所占百分比54.0%。受排放源和氣象條件影響,SOC濃度季節(jié)變化規(guī)律不同于SOC/OC占比變化規(guī)律。利用主成份分析(PCA)對中東部地區(qū)5個城市大氣PM2.5中的水溶性無機(jī)離子和碳組分進(jìn)行來源解析。結(jié)果表明:北京市PM2.5中水溶性無機(jī)離子主要來源于二次源、生物質(zhì)燃燒和揚(yáng)塵;碳組分主要來源于生物質(zhì)燃燒、燃煤和機(jī)動車尾氣。南京水溶性無機(jī)離子主要來源于燃煤、機(jī)動車尾氣、生物質(zhì)燃燒和揚(yáng)塵。太原PM2.5中水溶性無機(jī)離子的主要來源是二次源、生物質(zhì)燃燒、燃煤、揚(yáng)塵和農(nóng)業(yè)畜牧;碳組分的主要來源是生物質(zhì)燃燒、燃煤、汽油車尾氣。武漢水溶性無機(jī)離子主要來源于二次源、燃煤、生物質(zhì)燃燒和揚(yáng)塵;碳組分主要來源于燃煤、汽油車尾氣和生物質(zhì)燃燒。廣州水溶性無機(jī)離子主要來源于二次源、生物質(zhì)燃燒、揚(yáng)塵和燃煤;碳組分主要來源于燃煤、機(jī)動車尾氣、生物質(zhì)燃燒。由此可以看出,以清潔能源替代燃煤,控制機(jī)動車保有量的增長并提高燃油質(zhì)量,嚴(yán)禁秸稈等生物質(zhì)燃燒,以及提高綠色植被覆蓋率,應(yīng)成為改善中東部地區(qū)大氣環(huán)境質(zhì)量的重要手段。
[Abstract]:With the rapid development of the economy and the accelerating process of urbanization, atmospheric pollution in the eastern and Middle Eastern regions of China has been deteriorating. The atmospheric particles, especially the fine particulate matter PM2.5, have caused serious negative effects on air quality, climate change and human health. The representative months of this study from December 2014 to November 2015 were in the representative months. 5 typical cities in the middle eastern part of China, Beijing, Nanjing, Wuhan, Taiyuan and Guangzhou, have carried out an off-line continuous observation of atmospheric PM2.5 to analyze the characteristics of its mass concentration pollution. This study also analyzed the content and spatio-temporal characteristics of water soluble inorganic ions, organic carbon and element carbon in atmospheric PM2.5, and used principal component analysis. The source analysis of water-soluble inorganic ions and carbon components in PM2.5 was carried out. The results of this study are aimed at providing scientific theoretical basis for the government to formulate effective pollution prevention and control strategies. The results are as follows: according to the latest "standard of air environmental quality" in China (GB 3095-2012,75 mu g /m3), the PM2.5 pollution in Nanjing and Taiyuan is serious, followed by Wuhan and Beijing; the most polluted.5 cities in Guangzhou are both good and mild pollution weather, the total percentage is 67.7% to 81.1%. pollution sources, the regional atmosphere transmission and meteorological conditions are combined, resulting in the obvious seasonal difference of PM2.5. The fluctuation range of the daily average concentration of PM2.5 in winter and (or) autumn is larger. And the average concentration of PM2.5 in winter is the highest, but the change trend in spring and summer is more stable. Water soluble inorganic ions are one of the main chemical components of atmospheric PM2.5. The percentage of the total water-soluble inorganic ions in PM2.5 is 38.5% (Beijing), 44.3% (Nanjing), 49% (Taiyuan), 46.7% (Wuhan), 32.2% (Guangzhou). Among them, SO42-N03- and NH4+ (abbreviated as SNA) are the main components of the water soluble inorganic ions. The main types of water-soluble inorganic ions, 74.6% (Beijing), 82% (Nanjing), 73.9% (Taiyuan), 85.2% (Wuhan), 86.2% (Guangzhou) and 86.2% (Guangzhou), are all in summer and autumn, and in winter and spring are lower. The PM2.5 of Beijing and Guangzhou is neutral, and Nanjing and Taiyuan PM2.5 are alkaline, Wuhan PM2.5 The content of NH4+ in Taiyuan PM2.5 is sufficient to completely neutralize SO42-, NO3- and Cl-, while NH4+ in the other 4 cities is relatively deficient in PM2.5, of which the contribution of Nanjing and Wuhan NH4+ only in partial neutralization and SO42-. Beijing emission sources to the atmospheric PM2.5 pollution is dominant. The contribution of the Nanjing fixed discharge source and the mobile emission source to pM2.5 is equal. The contribution of the fixed emission sources of Wuhan, Taiyuan and Guangzhou to its PM2.5 is dominant. The carbon component is one of the main components of the atmospheric PM2.5, and the annual concentration of carbon gas soluble m (TCA) in Beijing, Taiyuan, Wuhan and Guangzhou (TCA) is 24.73 u g/m3,34.79 mu g/m3 and 16.85 u g/m3, respectively, accounting for 34.4%, 36.6%, 30.3% and 26.9%.PM2. respectively of the mass concentration of PM2.5, respectively. The average annual concentration of organic carbon (OC) in 5 is 1.9 to 2.3 times the element carbon (EC). In winter, the concentration of OC and EC is the highest and the lowest in summer. Beijing, Taiyuan and Wuhan PM2.5 OC and EC have the same source, while Guangzhou OC and EC sources are more complex than 2 in.4 urban atmosphere PM2.5, indicating that there are two organic carbon pollution. Taiyuan pollution. The average annual concentration is 10.9 mu g/m3, the percentage in OC is 69%, the SOC concentration in Guangzhou is the lowest, and the percentage 54.0%. of 4 mu g/m3 is affected by the emission source and the meteorological condition. The seasonal variation of SOC concentration is different from the SOC/OC occupation ratio, and the principal component analysis (PCA) is used for the water solubility in the atmosphere PM2.5 in the Middle East region of 5 cities. The results show that the water-soluble inorganic ions in Beijing PM2.5 mainly come from the two source, biomass combustion and dust, and the main sources of carbon components are biomass combustion, coal and motor vehicle exhaust. The main sources of water soluble inorganic ions in Nanjing are from coal, vehicle exhaust, biomass combustion and dust. The main sources of water-soluble inorganic ions in the original PM2.5 are two sources, biomass combustion, coal combustion, dust and agricultural animal husbandry. The main sources of the carbon components are biomass combustion, coal combustion, and gasoline vehicle exhaust. The main sources of water soluble inorganic ions in Wuhan are from two sources, coal, biomass combustion and dust, and the main source of carbon components is from coal burning, gasoline car tail. Gas and biomass combustion. The water-soluble inorganic ions in Guangzhou mainly come from two sources, biomass combustion, dust and coal combustion. The carbon components are mainly from coal, motor vehicle exhaust and biomass combustion. Burning and improving the coverage of green vegetation should become an important means to improve the atmospheric environment quality in the Middle East region.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X513
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 Xuejiao Deng;Fei Li;Yuanhong Li;Jianyong Li;Hongzhi Huang;Xiantong Liu;;Vertical distribution characteristics of PM in the surface layer of Guangzhou[J];Particuology;2015年03期
2 楊懂艷;劉保獻(xiàn);張大偉;陳圓圓;周健楠;梁云平;;2012~2013年間北京市PM_(2.5)中水溶性離子時空分布規(guī)律及相關(guān)性分析[J];環(huán)境科學(xué);2015年03期
3 Likun Huang;Guangzhi Wang;;Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China[J];Journal of Environmental Sciences;2014年12期
4 HUANG XiaoFeng;YUN Hui;GONG ZhaoHeng;LI Xiang;HE LingYan;ZHANG YuanHang;HU Min;;Source apportionment and secondary organic aerosol estimation of PM_(2.5) in an urban atmosphere in China[J];Science China(Earth Sciences);2014年06期
5 陶俊;成天濤;張仁健;曹軍驥;朱李華;王啟元;羅磊;張雷鳴;;Chemical Composition of PM_(2.5) at an Urban Site of Chengdu in Southwestern China[J];Advances in Atmospheric Sciences;2013年04期
6 ZHANG YangMei;SUN JunYing;ZHANG XiaoYe;SHEN XiaoJing;WANG TingTing;QIN MingKai;;Seasonal characterization of components and size distributions for submicron aerosols in Beijing[J];Science China(Earth Sciences);2013年05期
7 Ningbo Geng;Jia Wang;Yifei Xu;Wending Zhang;Chun Chen;Ruiqin Zhang;;PM_(2.5) in an industrial district of Zhengzhou,China:Chemical composition and source apportionment[J];Particuology;2013年01期
8 溫夢婷;胡敏;;北京餐飲源排放細(xì)粒子理化特征及其對有機(jī)顆粒物的貢獻(xiàn)[J];環(huán)境科學(xué);2007年11期
9 于建華;陳添;Benjamin GUINOT;Helene CACHIER;虞統(tǒng);劉文清;王欣;;Characteristics of Carbonaceous Particles in Beijing During Winter and Summer 2003[J];Advances in Atmospheric Sciences;2006年03期
,本文編號:1904376
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1904376.html