轎車雙軸撕碎機刀盤拓撲優(yōu)化設(shè)計
本文選題:拓撲優(yōu)化 + 固體各向同性微結(jié)構(gòu)材料懲罰模型 ; 參考:《天津科技大學》2017年碩士論文
【摘要】:隨著廢舊轎車數(shù)量的增加,處理廢舊轎車成為亟待解決的問題。廢舊轎車的破碎主要使用撕碎機,而現(xiàn)有撕碎機大都存在笨重,撕碎效率低,能耗大以及容易出現(xiàn)疲勞損傷等問題。刀盤作為撕碎機的關(guān)鍵部件,其結(jié)構(gòu)直接決定了撕碎機的撕碎效率、能耗和壽命,對刀盤進行輕量化設(shè)計非常必要。本論文以撕碎機刀盤為研究對象,研究大型復雜件的拓撲優(yōu)化方法,并進行撕碎機刀盤輕量化設(shè)計。輕量化設(shè)計主要依靠拓撲優(yōu)化算法,目前常用的拓撲優(yōu)化算法有基于變密度理論的固體各向同性微結(jié)構(gòu)材料懲罰模型法(Solid Isotropic Microstructur es with Penalization, SIMP)以及雙向漸進法(Bi-Directional Evolutionary Structural Optimization,BESO)等。其中SIMP方法程序?qū)崿F(xiàn)簡單,計算效率高,但是這種方法的拓撲優(yōu)化結(jié)果不能為之后的設(shè)計提供剛度最大的拓撲構(gòu)型。BESO方法能夠得到剛度最大的拓撲構(gòu)型,但是對于復雜結(jié)構(gòu),這種方法計算效率低,且拓撲優(yōu)化結(jié)果依賴于網(wǎng)格質(zhì)量。單獨使用這兩種算法均無法高效地獲得刀盤的拓撲構(gòu)型。本論文利用SIMP算法找出體積百分數(shù)與柔度之間的數(shù)學關(guān)系,得出體積百分數(shù)的約束方程,并將其應(yīng)用于BESO優(yōu)化算法中,從而提高了優(yōu)化效率和優(yōu)化質(zhì)量。本論文對轎車雙軸撕碎機進行了機械設(shè)計,利用ABAQUS軟件對撕碎機撕碎過程進行動態(tài)仿真,并利用仿真結(jié)果對刀盤加載,利用改善后拓撲優(yōu)化算法對撕碎機刀盤進行拓撲優(yōu)化,根據(jù)拓撲優(yōu)化重新設(shè)計出兩種新的刀盤結(jié)構(gòu),優(yōu)化刀盤的過程編寫為Python程序,得出合理的刀盤構(gòu)型并利用力學實驗驗證該結(jié)構(gòu)的合理性,通過3D-DI C實驗得出帶孔的刀盤結(jié)構(gòu)應(yīng)變最小,結(jié)構(gòu)最穩(wěn)定。本論文得出了體積百分數(shù)約束方程,改善了 BESO優(yōu)化算法,采用該方法優(yōu)化出的刀盤結(jié)構(gòu),使得撕碎機主軸應(yīng)力狀態(tài)得到改善,最大綜合應(yīng)力減少50.4MPa,通過改變刀盤的排布發(fā)現(xiàn)螺旋狀排布刀盤時撕碎機的破碎效果更好,破碎力是刀盤直線排布時的3.4倍。
[Abstract]:With the increase of the number of used cars, the disposal of used cars becomes an urgent problem to be solved. The shredder is mainly used in the crushing of used cars, but most of the existing shredders are heavy, low efficiency, high energy consumption and easy to appear fatigue damage and so on. As the key component of shredder, its structure directly determines the shredder's tearing efficiency, energy consumption and service life, so it is necessary to design the cutter head lightweight. In this paper, the shredder cutter head is taken as the research object, the topology optimization method of the large complex parts is studied, and the lightweight design of the shredder cutter head is carried out. The light weight design mainly relies on topology optimization algorithm. At present, the commonly used topology optimization algorithms are solid Isotropic Microstructur es with Penalization, SIMP) based on variable density theory and Bi-Directional Evolutionary Structural Optimization method (BESOs). The program of SIMP method is simple to realize and the calculation efficiency is high. However, the topology optimization result of this method can not provide the maximum stiffness topological configuration for the later design, but for the complex structure, the topological configuration of the maximum stiffness can be obtained. The computational efficiency of this method is low, and the topology optimization results depend on the mesh quality. The topology configuration of the cutter head can not be obtained efficiently by using these two algorithms alone. In this paper, SIMP algorithm is used to find out the mathematical relationship between volume percentage and flexibility, and the constraint equation of volume percentage is obtained, and it is applied to BESO optimization algorithm to improve the optimization efficiency and quality. In this paper, the mechanical design of car two-axis shredder is carried out. The shredder is dynamically simulated by ABAQUS software, and the cutter head is loaded by simulation results. The improved topology optimization algorithm is used to optimize the topology of shredder cutter. According to the topology optimization, two new cutter head structures are redesigned, and the process of optimizing the cutter head is programmed as Python program. The reasonable cutter head configuration is obtained and the rationality of the structure is verified by mechanical experiments. The 3D-DI C experiment shows that the structure of the cutter with holes has the minimum strain and the most stable structure. In this paper, the volume percent constraint equation is obtained, and the BESO optimization algorithm is improved. The structure of the cutter head is optimized by this method, and the stress state of the main shaft of the shredder is improved. The maximum comprehensive stress is reduced by 50.4 MPa. By changing the arrangement of the cutter head, it is found that the shredder has a better crushing effect when the spiral arrangement cutter is arranged, and the crushing force is 3.4 times as much as that when the cutter head is arranged in a straight line.
【學位授予單位】:天津科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X734.2;TH122
【參考文獻】
相關(guān)期刊論文 前10條
1 戴相錄;謝惠民;王懷喜;;二維數(shù)字圖像相關(guān)測量中離面位移引起的誤差分析[J];實驗力學;2013年01期
2 夏天翔;姚衛(wèi)星;;連續(xù)體結(jié)構(gòu)拓撲優(yōu)化方法評述[J];航空工程進展;2011年01期
3 馬鳴圖;游江海;路洪洲;王志文;;鋁合金汽車板性能及其應(yīng)用[J];中國工程科學;2010年09期
4 周克民,李俊峰;《連續(xù)結(jié)構(gòu)拓撲優(yōu)化:綜述》簡評[J];力學進展;2005年02期
5 周克民,李俊峰,李霞;結(jié)構(gòu)拓撲優(yōu)化研究方法綜述[J];力學進展;2005年01期
6 宿新東,管迪華;利用雙向漸進結(jié)構(gòu)優(yōu)化法對結(jié)構(gòu)固有振型的優(yōu)化[J];機械強度;2004年05期
7 王振海,張衛(wèi)紅;柔性結(jié)構(gòu)拓撲優(yōu)化設(shè)計發(fā)展概況[J];機械設(shè)計;2004年03期
8 榮見華,姜節(jié)勝,胡德文,顏東煌,付俊慶;基于應(yīng)力及其靈敏度的結(jié)構(gòu)拓撲漸進優(yōu)化方法[J];力學學報;2003年05期
9 李芳,凌道盛;工程結(jié)構(gòu)優(yōu)化設(shè)計發(fā)展綜述[J];工程設(shè)計學報(機械·設(shè)備和儀器的開發(fā)技術(shù));2002年05期
10 袁振,吳長春,莊守兵;基于雜交元和變密度法的連續(xù)體結(jié)構(gòu)拓撲優(yōu)化設(shè)計[J];中國科學技術(shù)大學學報;2001年06期
相關(guān)博士學位論文 前3條
1 葉紅玲;連續(xù)體結(jié)構(gòu)靜力拓撲優(yōu)化方法與軟件開發(fā)[D];北京工業(yè)大學;2005年
2 左孔天;連續(xù)體結(jié)構(gòu)拓撲優(yōu)化理論與應(yīng)用研究[D];華中科技大學;2004年
3 梅玉林;拓撲優(yōu)化的水平集方法及其在剛性結(jié)構(gòu)、柔性機構(gòu)和材料設(shè)計中的應(yīng)用[D];大連理工大學;2003年
相關(guān)碩士學位論文 前5條
1 孫圣權(quán);基于ESO的液壓機下橫梁結(jié)構(gòu)拓撲優(yōu)化及雙向進化結(jié)構(gòu)優(yōu)化方法研究[D];重慶大學;2008年
2 馮超恒;基于現(xiàn)有軟件的結(jié)構(gòu)拓撲優(yōu)化設(shè)計實現(xiàn)技術(shù)與程序系統(tǒng)[D];大連理工大學;2006年
3 曾慶強;結(jié)構(gòu)拓撲優(yōu)化中若干問題的研究[D];大連理工大學;2006年
4 胡秋香;結(jié)構(gòu)拓撲、形狀和尺寸最優(yōu)化方法在斜拉橋加勁梁設(shè)計中應(yīng)用[D];河海大學;2005年
5 孔文秦;連續(xù)體結(jié)構(gòu)的雙向進化優(yōu)化方法研究[D];南京航空航天大學;2005年
,本文編號:1891820
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1891820.html