雙級串聯(lián)旋流器電石渣純化技術(shù)及CFD數(shù)值模擬
本文選題:電石渣 + 雙級串聯(lián) ; 參考:《石河子大學(xué)》2017年碩士論文
【摘要】:電石渣是工業(yè)水解電石制備C2H2、C2H4O、PVC等化學(xué)物質(zhì)后產(chǎn)生的一種堿性廢棄物,其主要成分為氫氧化鈣Ca(OH)2,pH值約為14,具有強(qiáng)堿性。當(dāng)前我國經(jīng)濟(jì)高速發(fā)展,C2H2、C2H4O、PVC等化學(xué)物質(zhì)的需求量越來越大,產(chǎn)生大量的電石渣導(dǎo)致周邊環(huán)境遭到嚴(yán)重破壞。目前,公認(rèn)的電石渣最好的處理方法就是將其進(jìn)行煅燒成石灰作為生產(chǎn)電石的原材料,但該方法要求電石渣中有較高含量的Ca(OH)2,為了實(shí)現(xiàn)電石渣煅燒后再加工成電石循環(huán)利用,電石渣的純化技術(shù)至關(guān)重要。本文針對電石渣中Ca(OH)2的純化,設(shè)計了雙級串聯(lián)水力旋流器,通過試驗(yàn)研究和流場分析,驗(yàn)證了電石渣中Ca(OH)2純化的有效性,主要研究內(nèi)容如下:(1)采用XRD(X射線衍)和化學(xué)滴定方法研究電石渣的理化性質(zhì),測得電石渣組成成分、粒徑分布區(qū)間以及Ca(OH)2分布規(guī)律,分析發(fā)現(xiàn)電石渣中Ca(OH)2含量隨著電石渣顆粒粒徑的減小而增加,綜合考慮采用雙級串聯(lián)旋流器對電石渣中Ca(OH)2進(jìn)行純化,純化的目標(biāo)粒徑為75μm。(2)根據(jù)電石渣中Ca(OH)2的分布規(guī)律,結(jié)合水力旋流器分離理論,優(yōu)選最大切線速度軌跡面分離粒度模型,在現(xiàn)有水力旋流器的基礎(chǔ)上建立結(jié)構(gòu)參數(shù)之間的約束條件,計算出雙級水力旋流器的結(jié)構(gòu)參數(shù),一級水力旋流器:直徑50 mm、進(jìn)料口直徑25 mm、溢流管直徑15 mm、底流口直徑8 mm、柱段高度85mm、溢流管插入深度48mm、錐角6°;二級水力旋流器:直徑40 mm、進(jìn)料口直徑14 mm、溢流管直徑12 mm、底流口直徑8 mm、柱段高度42 mm、溢流管插入深度38 mm、錐角6°。(3)搭建試驗(yàn)平臺,依照實(shí)際試驗(yàn)情況,使用響應(yīng)曲面法設(shè)計兩因素混合水平的中心復(fù)合試驗(yàn)方案。對試驗(yàn)結(jié)果進(jìn)行統(tǒng)計學(xué)分析,確定電石渣純化的最佳工藝參數(shù):進(jìn)料濃度A=16%,進(jìn)料速度B=1.0 m/s,此時對應(yīng)的響應(yīng)指標(biāo)分別為:溢流分離極限d95=45.33μm,分離效率E=93%,分離精度H=0.45,分股比S=0.42,電石渣處理量Q=356.4 Kg/h。(4)采用Fluent軟件對電石渣純化用雙級串聯(lián)水力旋流器的工作過程進(jìn)行數(shù)值模擬,以進(jìn)料濃度A=16%,進(jìn)料速度B=1.0 m/s為基礎(chǔ)設(shè)定邊界條件,從壓力場、切向速度場、速度矢量進(jìn)行數(shù)值模擬,分析流場特性對旋流器分離性能的影響。數(shù)值模擬結(jié)果表明,雙級串聯(lián)旋流器的壓力場和切向速度場基本符合常規(guī)水力旋流器流場的變化規(guī)律,速度矢量圖顯示流場中出現(xiàn)了嚴(yán)重的短路流,將溢流管改變?yōu)殄F形溢流管,短路流現(xiàn)象有所改善。
[Abstract]:Calcium carbide slag is a kind of alkaline waste produced after the preparation of C _ 2H _ 2H _ 4O _ 4 PVC by industrial hydrolysis of calcium carbide, the main component of which is calcium hydroxide CaOH _ (2) O _ (2) H _ (2) H _ (2) pH value is about 14, and it has strong alkalinity. At present, the demand for chemical substances such as C _ 2H _ 2C _ 2H _ 4O _ 4 PVC is increasing with the rapid economic development of our country, and a large amount of calcium carbide slag is produced, which results in serious damage to the surrounding environment. At present, the best treatment method of calcium carbide slag is to calcinate it into lime as raw material to produce calcium carbide. However, this method requires a high content of CaOH2 in calcium carbide slag. In order to realize the recycling of calcium carbide slag after calcination and processing into calcium carbide, The purification technology of calcium carbide slag is very important. In this paper, a two-stage series hydrocyclone is designed for the purification of Ca(OH)2 from calcium carbide slag. Through experimental study and flow field analysis, the validity of Ca(OH)2 purification from calcium carbide slag is verified. The main research contents are as follows: (1) the physicochemical properties of calcium carbide slag were studied by XRD(X ray diffraction) and chemical titration method. The composition, particle size distribution interval and Ca(OH)2 distribution law of calcium carbide slag were measured. It is found that the content of Ca(OH)2 in calcium carbide slag increases with the decrease of particle size of calcium carbide slag. Considering the purification of Ca(OH)2 in calcium carbide slag by two-stage series cyclone, the target particle size is 75 渭 m 路m-2) according to the distribution rule of Ca(OH)2 in calcium carbide slag, the content of Ca(OH)2 in calcium carbide slag increases with the decrease of particle size of calcium carbide slag. Based on the separation theory of hydrocyclone, the separation particle size model of maximum tangent velocity locus is selected, and the constraint conditions between structural parameters are established on the basis of the existing hydrocyclone, and the structural parameters of two-stage hydrocyclone are calculated. First-stage hydrocyclones: diameter 50 mm, inlet diameter 25 mm, overflow pipe diameter 15 mm, bottom outlet diameter 8 mm, column height 85 mm, overflow pipe insertion depth 48 mm, cone angle 6 擄; second stage hydrocyclone: diameter 40 mm, inlet diameter 14 mm, overflow diameter 14 mm. The test platform was built with 12 mm diameter of pipe, 8 mm diameter of bottom flow port, 42 mm height of column, 38 mm depth of insertion of overflow pipe and 6 擄. According to the actual test situation, the method of response surface is used to design the central composite test scheme with two factors mixing level. Statistical analysis of the results of the experiment, The optimum process parameters for the purification of calcium carbide slag are determined as follows: feed concentration An 16, feed speed B = 1.0 m / s. The corresponding response indexes are as follows: overflow separation limit d95m 45.33 渭 m, separation efficiency EQ 93cm, separation accuracy H 0. 45, splitting ratio S 0 42, calcium carbide slag treatment quantity Q 356.4 kg / h 路4). The working process of two-stage series hydrocyclone for calcium carbide slag purification was simulated by Fluent software. On the basis of feed concentration A16 and feed velocity B1. 0 m / s, the boundary conditions are set up. Numerical simulation is carried out from pressure field, tangential velocity field and velocity vector to analyze the effect of flow field characteristics on the separation performance of hydrocyclone. The numerical simulation results show that the pressure field and tangential velocity field of two-stage series hydrocyclone basically accord with the variation law of conventional hydrocyclone flow field, and the velocity vector diagram shows that there is a serious short-circuit flow in the flow field. When the overflow tube is changed into a cone overflow tube, the short-circuit flow phenomenon is improved.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X78
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉鴻雁;王亞;韓天龍;黃青山;;水力旋流器溢流管結(jié)構(gòu)對微細(xì)顆粒分離的影響[J];化工學(xué)報;2017年05期
2 蔣明;黃小鳳;劉紅盼;湛方棟;何永美;李博;;電石渣資源化應(yīng)用研究進(jìn)展[J];硅酸鹽通報;2016年12期
3 應(yīng)銳;喻俊志;王衛(wèi)兵;張亭;馮靜安;杜晟;;細(xì)顆粒分級復(fù)合型水力旋流器結(jié)構(gòu)及工藝參數(shù)的優(yōu)化研究[J];機(jī)械工程學(xué)報;2017年02期
4 張亭;王衛(wèi)兵;馮靜安;應(yīng)銳;;水力旋流器固液分離效率優(yōu)化控制仿真[J];計算機(jī)仿真;2016年08期
5 林衛(wèi)星;;全尾砂旋流器分級試驗(yàn)研究[J];黃金;2016年07期
6 羅建國;;旋流器分離的平衡軌道理論研究[J];選煤技術(shù);2016年03期
7 張亭;馮靜安;王衛(wèi)兵;應(yīng)銳;邱艷軍;;內(nèi)部增加中心柱的旋流器流場的數(shù)值模擬[J];機(jī)械設(shè)計與研究;2016年03期
8 程姚生;肖獨(dú)山;徐杰;葛飛躍;楊靖;;電石渣的理化性質(zhì)分析及其應(yīng)用研究[J];山東化工;2016年11期
9 郝長青;褚桂云;劉恩勇;;利用電石渣生產(chǎn)水泥的實(shí)踐應(yīng)用[J];粉煤灰;2016年02期
10 劉楊;王振波;;水力旋流器分離效率影響因素的研究進(jìn)展[J];流體機(jī)械;2016年02期
相關(guān)博士學(xué)位論文 前1條
1 賈艷;流體動力學(xué)方程組的性態(tài)研究[D];安徽大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 熊思;油井產(chǎn)出液預(yù)脫水用新型水力旋流器的設(shè)計與特性研究[D];北京石油化工學(xué)院;2015年
2 魯逍;新疆資源型城市產(chǎn)業(yè)結(jié)構(gòu)分析[D];新疆大學(xué);2015年
3 王,
本文編號:1877086
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1877086.html