瀝青基多孔炭的制備及其對(duì)染料吸附性能的研究
本文選題:多孔炭 + 模板; 參考:《安徽工業(yè)大學(xué)》2017年碩士論文
【摘要】:吸附法在處理印染廢水中占有重要地位,吸附劑則是吸附技術(shù)的核心。多孔炭因其具有高的比表面積、發(fā)達(dá)的孔隙結(jié)構(gòu)、豐富的表面官能團(tuán)等優(yōu)點(diǎn)而引起人們的探究興趣,而多孔炭的孔徑結(jié)構(gòu)的設(shè)計(jì)與調(diào)控是提高其吸附性能的關(guān)鍵所在。本文針對(duì)分子尺寸較大的染料,選擇煤瀝青為碳源、分別采用合成的鎂鋁水滑石和MgO為模板耦合KOH活化,通過(guò)控制模板與碳源的質(zhì)量比及活化溫度分別制備了中孔炭和分級(jí)多孔炭,并對(duì)分級(jí)多孔炭進(jìn)行負(fù)載金屬離子改性。借助場(chǎng)發(fā)射掃描電鏡(FESEM),透射電鏡(TEM)、氮吸附等手段對(duì)多孔炭材料的物理結(jié)構(gòu)和表面形態(tài)進(jìn)行了表征,并考察了其對(duì)染料的吸附性能,其主要結(jié)果如下:(1)以煤瀝青為碳源,合成的鎂鋁水滑石為模板耦合氫氧化鉀活化,采用常規(guī)加熱的活化方式,制得具有片層狀結(jié)構(gòu)的中孔炭。當(dāng)模板與碳源的質(zhì)量比為4時(shí),制得中孔炭MPC_4,其比表面積、平均孔徑和比孔容分別為936 m~2/g、7.37 nm和1.73 cm~3/g。作為吸附劑,所制備的MPC_4對(duì)酸性橙74、茜素綠和堿藍(lán)6B均有較好的吸附性能,吸附等溫線研究表明,Langmuir模型能更好的描述MPC_4對(duì)茜素綠的吸附過(guò)程,而對(duì)酸性橙74和堿藍(lán)6B的吸附過(guò)程,則適用于Freundich模型。動(dòng)力學(xué)研究表明,MPC_4對(duì)酸性橙74和堿藍(lán)6B的吸附過(guò)程符合擬二級(jí)動(dòng)力學(xué)方程,對(duì)茜素綠的吸附過(guò)程符合擬一級(jí)動(dòng)力學(xué)方程。由于所制的MPC_4平均孔徑較大,難以和染料形成較強(qiáng)的色散力,其對(duì)染料的吸附性能低于比表面積為1400 m~2/g的商品炭。(2)以煤瀝青為碳源,納米MgO為模板耦合KOH活化,改變模板和碳源的質(zhì)量比和活化終溫制備具有中空球形結(jié)構(gòu)的分級(jí)多孔炭。當(dāng)煤瀝青和納米MgO質(zhì)量分別為2和19 g,活化終溫為900℃,所制得的HPC_(2-19-900)的比表面積、比孔容和平均孔徑分別為2292 m~2/g、2.05 cm~3/g和3.57 nm。由于比表面積的提高,HPC_(2-19-900)對(duì)酸性橙74、茜素綠和堿藍(lán)染料都表現(xiàn)出優(yōu)異的吸附性能。當(dāng)三種染料的平衡濃度為170mg/L左右時(shí),HPC_(2-19-900)對(duì)酸性橙74、茜素綠和堿藍(lán)的平衡吸附量分別為3097、1373和4169 mg/g。對(duì)吸附等溫線進(jìn)行擬合發(fā)現(xiàn),Freundich模型能更好的描述HPC_(2-19-900)對(duì)三種染料的吸附等溫線;動(dòng)力學(xué)研究表明,HPC_(2-19-900)對(duì)三種染料的吸附動(dòng)力學(xué)過(guò)程符合擬二級(jí)動(dòng)力學(xué)方程。由于分級(jí)多孔炭中含有大量的大微孔和小中孔,這些孔能和染料之間形成強(qiáng)的色散力,HPC_(2-19-900)對(duì)三種染料的吸附性能均高于商品炭,表明制備的分級(jí)多孔炭是性能優(yōu)異的染料吸附劑。(3)對(duì)HPC_(2-19-900)進(jìn)行負(fù)載金屬離子改性,考察不同金屬離子負(fù)載對(duì)其染料吸附性能的影響。盡管金屬離子的負(fù)載導(dǎo)致多孔炭比表面積下降,但其表面也引入了對(duì)染料具有較強(qiáng)作用力的新的吸附活性位。由于表面含有大量高度分散的Zn(Ⅱ),在較低濃度下,Zn(Ⅱ)/HPC對(duì)酸性橙74、茜素綠和堿藍(lán)6B都表現(xiàn)出優(yōu)異的吸附性能,表明Zn(Ⅱ)/HPC能深度脫除廢水中的染料分子。同樣由于產(chǎn)生新的吸附活性位,Cu(Ⅱ)/HPC對(duì)酸性橙74的吸附量較初始多孔炭也有明顯的提高;對(duì)于分子尺寸較大的茜素綠,與初始炭相比,Fe(Ⅲ)/HPC對(duì)其吸附性能也有一定程度的提高。對(duì)吸附等溫線進(jìn)行擬合,發(fā)現(xiàn)Langmuir模型能更好的描述Zn(Ⅱ)/HPC對(duì)三種染料的吸附過(guò)程,而Freundich模型更適用于分別描述Cu(Ⅱ)/HPC對(duì)酸性橙74和Fe(Ⅲ)/HPC對(duì)茜素綠的吸附過(guò)程。吸附動(dòng)力學(xué)研究表明,Zn(Ⅱ)/HPC對(duì)三種染料,Cu(Ⅱ)/HPC對(duì)酸性橙74的吸附動(dòng)力學(xué)過(guò)程均符合擬二級(jí)動(dòng)力學(xué)方程,而Fe(Ⅲ)/HPC對(duì)茜素綠的動(dòng)力學(xué)過(guò)程符合擬一級(jí)動(dòng)力學(xué)方程。
[Abstract]:Adsorption method plays an important role in the treatment of printing and dyeing wastewater. Adsorbents are the core of adsorption technology. Porous carbon has the advantages of high specific surface area, developed pore structure and rich surface functional groups, and the design and regulation of pore structure of porous carbon is the key to improve its adsorption performance. In this paper, the coal bitumen was selected as the carbon source for the dye with large molecular size, and the synthesized magnesia aluminum hydrotalcite and MgO were used as the template coupling KOH activation. The mesoporous carbon and the graded porous carbon were prepared by controlling the mass ratio and the activation temperature of the carbon source, and the graded porous carbon was loaded with metal ions. The physical structure and surface morphology of the porous carbon materials were characterized by scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and nitrogen adsorption. The adsorption properties of the dyes were investigated. The main results were as follows: (1) the synthesized magnesia aluminum hydrotalcite was activated by the template coupled with potassium hydroxide, and the conventional heating method was used. The mesoporous carbon with lamellar structure was prepared. When the mass ratio of the template and carbon source was 4, the mesoporous carbon MPC_4 was prepared. The specific surface area, the average pore size and the specific pore volume were 936 m~2/g, 7.37 nm and 1.73 cm~3/g. respectively. The prepared MPC_4 had better adsorption properties for Acid Orange 74, alizarin green and Alkali Blue 6B, and the adsorption isotherm study It shows that the Langmuir model can better describe the adsorption process of MPC_4 to alizarin green, while the adsorption process for acid orange 74 and Alkali Blue 6B is suitable for Freundich model. Kinetics study shows that the adsorption process of MPC_4 to acid orange 74 and Alkali Blue 6B is in accordance with the pseudo two kinetic equation, and the adsorption process of Alizarin green is in accordance with the pseudo first order kinetic equation. Because of the larger average pore size of the MPC_4, it is difficult to form a strong dispersion force with the dye, and the adsorption performance of the dye is lower than that of the commercial carbon with a specific surface area of 1400 m~2/g. (2) the coal tar is used as the carbon source and the nano MgO is activated by the template coupling KOH, and the mass ratio of the template and carbon source and the final temperature of the activation are used to prepare the hollow spherical structure. Porous carbon. When the mass of coal tar pitch and nanoscale MgO are 2 and 19 g respectively, the final activation temperature is 900 C, the specific surface area of HPC_ (2-19-900) is 2292 m~2/g, 2.05 cm~3/g and 3.57 nm., respectively, with the increase of specific surface area, HPC_ (2-19-900) shows excellent adsorbability to acid orange 74, alizarin green and alkali blue dye. When the equilibrium concentration of three dyes is about 170mg/L, the equilibrium adsorption of HPC_ (2-19-900) to acid orange 74, alizarin green and alkali blue are 30971373 and 4169 mg/g., respectively. The Freundich model can better describe the adsorption isotherm of HPC_ (2-19-900) to three dyes; kinetics study shows HPC_ (2-19). -900) the adsorption kinetics of the three dyes accorded with the pseudo two kinetic equation. Due to the large number of micropores and small mesopore in the porous carbon, these pores could form a strong dispersion force between the dyes and the dye, and the adsorption properties of the three dyes were higher than that of the commercial carbon, indicating that the porous carbon prepared by the HPC_ (2-19-900) was an excellent dye dyeing. (3) (3) the modification of metal ions was carried out on HPC_ (2-19-900), and the effect of different metal ion loads on the adsorption properties of the dye was investigated. Although the load of metal ions resulted in a decrease in the specific surface area of the porous carbon, the surface also introduced a new adsorption active site with strong force on the dye. Dispersed Zn (II), at lower concentration, Zn (II) /HPC showed excellent adsorption properties for acid orange 74, alizarin green and Alkali Blue 6B, indicating that Zn (II) /HPC can remove dye molecules in the wastewater. The adsorption capacity of Cu (II) /HPC to acid orange 74 is also significantly higher than that of initial porous carbon due to the production of new adsorptive active sites. The large size alizarin green, compared with the initial carbon, Fe (III) /HPC also improved its adsorption properties to a certain extent. The adsorption isotherm was fitted, and the Langmuir model could better describe the adsorption process of Zn (II) /HPC to three dyes, and the Freundich model was more suitable for describing Cu (II) /HPC to acid orange 74 and Fe (III) /HPC pairs respectively. The adsorption kinetics of Alizarin green shows that the adsorption kinetics of Zn (II) /HPC on three dyes and Cu (II) /HPC for acid orange 74 conforms to the pseudo two kinetic equation, and the kinetic process of Fe (III) /HPC for Alizarin green is in accordance with the pseudo first order kinetic equation.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ424;X791
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 徐麗軍;;活性炭對(duì)水中有機(jī)物去除的研究進(jìn)展[J];廣州化工;2015年04期
2 熊重鐸;程強(qiáng);施薇;徐愛(ài)華;夏東升;曾慶福;;微波無(wú)極紫外光催化降解茜素綠的性能研究及產(chǎn)物分析[J];環(huán)境工程學(xué)報(bào);2014年12期
3 Babak Noroozi;George A.Sorial;;Applicable models for multi-component adsorption of dyes:A review[J];Journal of Environmental Sciences;2013年03期
4 唐靜;周林;王薇;馮玉英;魏少華;周家宏;周延懷;;光譜法研究Fe(Ⅲ)與茜素綠之間的相互作用[J];南京師大學(xué)報(bào)(自然科學(xué)版);2011年03期
5 孫淑波;孫兆楠;胡筱敏;;電凝聚—電氣浮法處理活性黃印染廢水[J];化工環(huán)保;2010年05期
6 竇智峰;姚伯元;;高性能活性炭制備技術(shù)新進(jìn)展[J];海南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
7 申震;唐先進(jìn);劉超;徐馳;;焙燒態(tài)鎂鋁水滑石處理陰離子染料廢水研究[J];環(huán)境科學(xué)與技術(shù);2006年03期
8 任慶利,張贊鋒,羅強(qiáng);納米晶鎂鋁水滑石的制備及其熱分解機(jī)理[J];物理化學(xué)學(xué)報(bào);2004年03期
9 韓嚴(yán)和,全燮,薛大明,趙雅之,陳碩;活性炭改性研究進(jìn)展[J];環(huán)境污染治理技術(shù)與設(shè)備;2003年01期
,本文編號(hào):1871170
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1871170.html