基于氫自養(yǎng)反硝化的生物電化學系統(tǒng)脫氮性能研究
本文選題:生物電化學系統(tǒng) + 氫自養(yǎng)反硝化。 參考:《江南大學》2017年碩士論文
【摘要】:源于工業(yè)、農(nóng)業(yè)、畜牧業(yè)的大力發(fā)展,大量的氮素進入水體并不斷累積,威脅到人類和其他生物的生存,含氮廢水的高效處理已成為備受關注的問題。相對于傳統(tǒng)的物理、化學及生物脫氮工藝,基于生物電化學系統(tǒng)(Bioelectrochemical System,BES)的反硝化脫氮技術具有效率高、能耗低、污泥產(chǎn)生量少等優(yōu)點而備受關注。為了給BES中的脫氮行為提供更多的電子來源,本研究基于氫自養(yǎng)反硝化的原理,將生物制氫工藝與生物電化學系統(tǒng)耦合,構(gòu)建了三種不同結(jié)構(gòu)的生物電化學脫氮系統(tǒng),包括雙室BC(Biocathode)、串聯(lián)式HBC(Hydrogen Facilitated Biocathode)和三室CHBC(Coupled Hydrogen and Biocathode),并從動力學、電化學、分子生物學等方面展開研究,綜合比較了三組BES的運行性能,發(fā)現(xiàn)了三室CHBC的脫氮性能最佳。主要研究結(jié)果如下:(1)采用不同的方式對BES陽極產(chǎn)電菌、陰極脫氮菌、產(chǎn)氫菌進行了馴化,結(jié)果顯示,陽極產(chǎn)電菌經(jīng)過28 d成功馴化后,陽極電勢逐步穩(wěn)定在-0.55 V左右;脫氮陰極微生物經(jīng)過28 d的成功馴化后,NO-3-N去除率趨于穩(wěn)定;厭氧污泥經(jīng)預處理消滅產(chǎn)甲烷菌后用于產(chǎn)氫菌群的馴化,馴化成功后BC、HBC、CHBC發(fā)酵氣體中H2組分均穩(wěn)定在40-50%之間,且無CH4氣體生成。(2)NO-3-N初始濃度為130 mg/L時,CHBC、HBC和BC分別經(jīng)過6 d,8 d和12d的運行可使NO-3-N降解率達到95%以上。NO-3-N降解過程中,CHBC中的NO-2-N濃度始終保持最低,其最高濃度僅為4.20 mg/L,遠低于HBC(15.92 mg/L)和BC(32.56mg/L),由此表明CHBC的脫氮效率最佳,且反硝化過程更完整,而BC中脫氮途徑很可能是以硝酸鹽異化為主。(3)三組BES產(chǎn)氫過程中均發(fā)生了明顯的乙酸和丁酸積累,屬于典型的丁酸型發(fā)酵產(chǎn)氫。72 h內(nèi),HBC產(chǎn)酸總量最低,相應的產(chǎn)氫量也保持最低(32.70 m L/g VS)。CHBC的產(chǎn)酸總量最高,但產(chǎn)氫量卻受到乙酸濃度的抑制,僅達到BC(50.23 m L/g VS)的75.91%;CHBC(52.49%)和HBC(45.59%)還伴有乙醇型發(fā)酵產(chǎn)氫,使得發(fā)酵氣體中的氫含量高于BC(44.41%),并能夠保證產(chǎn)氫體系的穩(wěn)定性,從而更好地為BES脫氮提供電子。(4)CHBC擁有最大的電流(3.60 m A)和開路電壓(336.7 mV),其庫倫效率(79.1±0.2%)相比BC和HBC分別提高了35.21%和9.56%,其最大功率密度能夠達到118.43 m W/m3,較BC和HBC分別提高了46.86%和20.10%。電化學阻抗譜的測定結(jié)果顯示CHBC(35.45Ω)和HBC(39.83Ω)的極化內(nèi)阻僅為BC(81.52Ω)的一半。此外,CHBC中電極膜傳遞電子的能力最強,且其脫氮陰極生物膜中的全細胞數(shù)量最多。因此,CHBC具有產(chǎn)電性能最佳,極化電阻最小,電子傳遞性能最佳的電化學優(yōu)勢。(5)利用Illumina測序技術對三組BES脫氮陰極的微生物分析得知,盡管CHBC生物多樣性最低,但有5種脫氮菌屬在CHBC(Simplicispira,Thauera,Thermomonas,Azoarcus,Ottowia)中得到了富集,而BC(Denitratisoma)和HBC(Thiobacillus)中僅各有1種脫氮菌得到富集,且CHBC中這7種脫氮菌屬相對豐度(45.44%)遠高于BC(15.13%)和HBC(15.96%),說明CHBC更適合脫氮菌群的生長,從而提高了系統(tǒng)的脫氮性能。此外,三組BES中均發(fā)現(xiàn)了少量的產(chǎn)氫菌屬Clostridium sp.,且CHBC富集了更多的以Simplicispira為主的氫自養(yǎng)反硝化菌,表明CHBC中的氫自養(yǎng)反硝化能力更強,脫氮途徑很可能以硝酸鹽呼吸為主。
[Abstract]:Because of the great development of industry, agriculture and animal husbandry, a large number of nitrogen enters the water body and accumulates continuously, which threatens the survival of human and other organisms. The efficient treatment of nitrogen containing wastewater has become a concern. Relative to the traditional physics, chemical and biological denitrification processes are based on Bioelectrochemical System (BES). In order to provide more electronic sources for denitrification in BES, this study is based on the principle of hydrogen autotrophic denitrification in this study, which is based on the principle of hydrogen autotrophic denitrification, coupled with biological hydrogen production technology and biological electrochemical system, and constructed three different structures of biological electrochemical denitrification. The system, including two chamber BC (Biocathode), series HBC (Hydrogen Facilitated Biocathode) and three chamber CHBC (Coupled Hydrogen and Biocathode), has been studied from the aspects of dynamics, electrochemistry and molecular biology. The performance of the three groups of BES is compared and the best denitrification performance of the three chambers is found. The main research results are as follows: (1) The BES anode producing bacteria, the cathodic denitrification bacteria and the hydrogen producing bacteria were domesticated in different ways. The results showed that the anode potential steadily stabilized at -0.55 V after 28 d acclimation, and the removal rate of NO-3-N was stable after the successful acclimation of the denitrification cathode microorganism after 28 d; the anaerobic sludge was pretreated to eliminate methanogenic bacteria. After the acclimation of the hydrogen producing bacteria group, the H2 components in the BC, HBC, and CHBC fermented gases were stable between 40-50% and no CH4 gas after the domestication. (2) when the initial concentration of NO-3-N was 130 mg/L, CHBC, HBC and BC were passed through 6 D, 8 and 8. The highest concentration is only 4.20 mg/L, far below HBC (15.92 mg/L) and BC (32.56mg/L), which indicates that the denitrification efficiency of CHBC is the best and the denitrification process is more complete, and the denitrification pathway in BC is likely to be mainly nitrate dissimilation. (3) the accumulation of acetic acid and butyric acid in the three groups of BES production is a typical butyric acid. The total amount of acid produced in HBC was the lowest in the type of hydrogen producing.72 h, and the corresponding hydrogen production was the lowest (32.70 m L/g VS).CHBC was the highest, but the hydrogen production was inhibited by the concentration of acetic acid, only 75.91% of BC (50.23 m L/g VS); CHBC (52.49%) and 45.59% (45.59%) were accompanied by ethanol production of hydrogen, which made the hydrogen content in the fermented gas higher than that of the C (44.41%), and can guarantee the stability of the hydrogen production system, and thus better provide electrons for BES denitrification. (4) CHBC has the maximum current (3.60 m A) and open circuit voltage (336.7 mV), its Kulun efficiency (79.1 + 0.2%) increases 35.21% and 9.56% compared to BC and HBC respectively, and its maximum power density can reach 118.43 m W/m3, which is 4 higher than BC and HBC, respectively. The results of 6.86% and 20.10%. electrochemical impedance spectroscopy showed that the polarization internal resistance of CHBC (35.45 omega) and HBC (39.83 omega) was only half of BC (81.52 omega). In addition, the electrode membrane in CHBC has the strongest ability to transfer electrons and the number of all cells in the denitrogenation cathode biofilm is the most. Therefore, CHBC has the best electric property, the polarization resistance is the smallest, and the electron transfer is the least. (5) 5) microbiological analysis of three groups of BES denitrogenation cathodes by Illumina sequencing showed that 5 kinds of denitrification bacteria were enriched in CHBC (Simplicispira, Thauera, Thermomonas, Azoarcus, Ottowia), but only 1 species in BC (Denitratisoma) and HBC. The denitrification bacteria were enriched, and the abundance of the 7 denitrification bacteria in CHBC was much higher than that of BC (15.13%) and HBC (15.96%), indicating that CHBC was more suitable for the growth of the denitrification bacteria group, thus improving the system's denitrification performance. In addition, a small amount of hydrogen producing bacteria Clostridium sp. was found in the three groups of BES, and CHBC enriched more Simplicispira mainly. The hydrogen autotrophic denitrifying bacteria showed that hydrogen autotrophic denitrification was stronger in CHBC, and nitrification was probably the main way of denitrification.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X703
【參考文獻】
相關期刊論文 前10條
1 徐瑾;于萍萍;張紅鋒;;現(xiàn)代分子生物學技術在活性污泥微生物菌群研究中的應用[J];能源環(huán)境保護;2016年01期
2 蔣海明;季祥;司萬童;潘建剛;蔡祿;;生物電化學系統(tǒng)還原二氧化碳產(chǎn)甲烷研究進展[J];土木建筑與環(huán)境工程;2015年03期
3 彭新紅;初喜章;單科;黃鵬飛;;基于海水淡化的生物電化學脫鹽技術研究進展及應用前景[J];應用化學;2015年02期
4 孫立紅;陶虎春;;生物制氫方法綜述[J];中國農(nóng)學通報;2014年36期
5 嚴群;劉浩;;微生物電化學系統(tǒng)處理含氮廢水研究進展[J];食品與生物技術學報;2014年05期
6 何海波;王許云;白立俊;郭慶杰;;石墨烯/聚苯胺復合陽極的制備及在MFC中的應用[J];化工學報;2014年06期
7 梁珠英;拉元林;;貴南縣不同退化草地物種多樣性的研究[J];草業(yè)與畜牧;2013年04期
8 孫飛;王愛杰;嚴群;張光生;;生物電化學系統(tǒng)還原降解氯霉素[J];生物工程學報;2013年02期
9 延利軍;;水中硝酸鹽污染現(xiàn)狀、危害及脫除技術[J];城鎮(zhèn)供水;2013年01期
10 吳雨華;;歐美國家地下水硝酸鹽污染防治研究進展[J];中國農(nóng)學通報;2011年08期
相關博士學位論文 前4條
1 袁廣恩;原位生物電催化過氧化氫氧化降解偶氮染料的性能研究[D];大連理工大學;2015年
2 黃振興;厭氧菌群發(fā)酵制氫的定向強化及其機制解析[D];江南大學;2013年
3 孫丹;定向優(yōu)選陽極微生物促進生物電化學系統(tǒng)效能的研究[D];哈爾濱工業(yè)大學;2013年
4 李中堅;基于微生物電化學系統(tǒng)的廢水處理技術研究[D];浙江大學;2012年
相關碩士學位論文 前1條
1 李香香;稻飛虱腸道細菌多樣性分析[D];南京農(nóng)業(yè)大學;2010年
,本文編號:1853250
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1853250.html