再生水循環(huán)冷卻系統(tǒng)中無機磷的遷移轉(zhuǎn)化研究
本文選題:再生水 + 循環(huán)冷卻水系統(tǒng); 參考:《華北電力大學》2017年碩士論文
【摘要】:近年來,隨著水資源問題的日益突出,再生水已成為電廠循環(huán)冷卻水系統(tǒng)補給水的重要水源。再生水具有水質(zhì)穩(wěn)定、來源可靠且不需要長距離引水的特點,然而再生水復雜的水質(zhì)條件導致循環(huán)冷卻水系統(tǒng)將面臨更加嚴峻的運行問題。再生水中的磷含量較高且存在形態(tài)多種多樣,是影響循環(huán)冷卻水系統(tǒng)結(jié)垢、腐蝕和微生物生長的重要因素之一。本課題以模擬再生水中的無機磷為研究對象,考察無機磷的遷移轉(zhuǎn)化規(guī)律以及運行條件和水質(zhì)條件對其的影響。研究借鑒河床底泥中無機磷的SMT連續(xù)提取法,建立了模擬系統(tǒng)內(nèi)垢體中無機磷定量定性分析的M-SMT法。通過分別測定溶解態(tài)無機磷和垢體中無機磷的具體存在形態(tài)及含量,同時分析系統(tǒng)內(nèi)的結(jié)垢和腐蝕情況,總結(jié)循環(huán)冷卻水系統(tǒng)中無機磷的遷移轉(zhuǎn)化規(guī)律及其對系統(tǒng)結(jié)垢、腐蝕的影響。研究結(jié)果表明,M-SMT連續(xù)提取法能夠?qū)δM系統(tǒng)內(nèi)垢體中的無機磷進行完全提取,回收率接近100%;不同形態(tài)無機磷可以得到完全分離。溶解態(tài)無機磷向垢體中的遷移主要受成垢離子積和相應難溶物溶度積的影響。運行條件中,溫度是影響無機磷在液-固兩相中遷移的主要因素,溫度升高,難溶物溶度積降低,溶解態(tài)無機磷的遷移速率、遷移量及遷移率均明顯上升。水質(zhì)條件中,增加單一無機磷或硬度均使成垢離子積顯著增加,因此,無機磷的遷移速率和遷移量增加,但受成垢陽離子濃度的影響,水中無機磷濃度增加后,其遷移率降低。磷酸鹽沉積物是系統(tǒng)結(jié)垢的主要成分之一,系統(tǒng)結(jié)垢量與無機磷的遷移量在一定程度上呈正比。濃縮倍率由2提升到6,系統(tǒng)內(nèi)無機磷遷移量增加了920 mg,同時系統(tǒng)內(nèi)結(jié)垢量由2.85g增加到9.35g,結(jié)垢量上升明顯。不同條件對顆粒態(tài)無機磷的影響不同,運行條件中,隨著流速的增大,弱吸附態(tài)磷含量呈下降趨勢,而鋁結(jié)合態(tài)磷含量逐漸上升;溫度升高促進鋁結(jié)合態(tài)磷向鐵結(jié)合態(tài)磷和鈣結(jié)合態(tài)磷的轉(zhuǎn)化;提高濃縮倍率對4種形態(tài)無機磷的影響相同,其含量均有所上升,但占總顆粒態(tài)無機磷的比例無明顯變化。水質(zhì)條件中,隨著無機磷濃度的增加,無機磷遷移至固相之中的量增加,且以形成弱吸附態(tài)磷和鈣結(jié)合態(tài)磷為主;而系統(tǒng)中總硬度的增加,則有利于鈣結(jié)合態(tài)磷的形成。系統(tǒng)內(nèi)掛片的腐蝕率受系統(tǒng)結(jié)垢量、弱吸附態(tài)磷和鋁結(jié)合態(tài)磷含量的綜合影響。
[Abstract]:In recent years, with the increasingly prominent problem of water resources, reclaimed water has become an important source of recharge water for the circulating cooling water system in power plants. The reclaimed water has the characteristics of stable water quality, reliable source and no need for long distance water diversion. However, the complex water quality conditions of the reclaimed water will lead to more severe operational problems for the circulating cooling water system. The high phosphorus content and various forms in regenerated water are one of the important factors affecting scaling corrosion and microbial growth of circulating cooling water system. In this paper, inorganic phosphorus in simulated regenerated water was studied to investigate the migration and transformation of inorganic phosphorus and the effects of operation conditions and water quality conditions on it. The M-SMT method for quantitative qualitative analysis of inorganic phosphorus in scale body of simulation system was established by using the method of SMT continuous extraction of inorganic phosphorus from the sediment of river bed for reference. The specific forms and contents of inorganic phosphorus in dissolved inorganic phosphorus and scale body were determined, and the scaling and corrosion conditions in the system were analyzed, and the transfer and transformation of inorganic phosphorus in circulating cooling water system and scaling in the system were summarized. The effect of corrosion. The results show that the method of continuous extraction of inorganic phosphorus in the simulated system can be used to extract inorganic phosphorus completely, and the recovery rate is close to 100, and the inorganic phosphorus in different forms can be completely separated. The migration of dissolved inorganic phosphorus to the scale is mainly affected by the ion product of scale formation and the solubility product of the corresponding insoluble substance. In operation conditions, temperature is the main factor affecting the migration of inorganic phosphorus in liquid-solid phase. With the increase of temperature, the solubility product of insoluble matter decreases, and the migration rate, migration amount and mobility of dissolved inorganic phosphorus increase obviously. In the water quality condition, the increase of single inorganic phosphorus or hardness makes the scale formation ionic product increase significantly. Therefore, the transfer rate and amount of inorganic phosphorus increase, but affected by the concentration of scaling cations, the migration rate of inorganic phosphorus in water decreases with the increase of inorganic phosphorus concentration. Phosphate sediment is one of the major components of scale formation in the system, and the amount of scale in the system is proportional to the amount of inorganic phosphorus transport to some extent. When the concentration ratio was increased from 2 to 6, the amount of inorganic phosphorus transport in the system increased by 920 mg, and the scaling amount in the system increased from 2.85 g to 9.35 g. The effect of different conditions on the particle inorganic phosphorus is different. In operation conditions, the content of weakly adsorbed phosphorus decreases with the increase of flow rate, while the content of aluminum-bound phosphorus increases gradually. The increase of temperature can promote the conversion of aluminum-bound phosphorus to iron-bound phosphorus and calcium-bound phosphorus, and the effect of increasing concentration ratio on the four forms of inorganic phosphorus is the same, and the contents of the four forms of inorganic phosphorus are all increased, but the proportion of total particulate inorganic phosphorus does not change obviously. In water quality conditions, with the increase of inorganic phosphorus concentration, the amount of inorganic phosphorus migrating to solid phase increases, and the formation of weakly adsorbed phosphorus and calcium-bound phosphorus is the main factor, while the increase of total hardness in the system is conducive to the formation of calcium-bound phosphorus. The corrosion rate of the hanging sheet in the system is affected by the amount of scale, the content of weakly adsorbed phosphorus and the content of aluminum-bound phosphorus.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X131.2
【參考文獻】
相關期刊論文 前10條
1 張莉;王俏麗;李偉;李素靜;;電力行業(yè)溫室氣體排放情景分析[J];浙江大學學報(工學版);2015年12期
2 雷玉桃;黎銳鋒;;中國工業(yè)用水影響因素的長期動態(tài)作用機理[J];中國人口·資源與環(huán)境;2015年02期
3 胡丹梅;宗濤;張志超;張建平;;自然通風逆流濕式冷卻塔進風口導葉板結(jié)構(gòu)參數(shù)優(yōu)化[J];中國電機工程學報;2013年11期
4 岳冠華;鄒紅云;尚麗民;許萍;;再生水回用于工業(yè)循環(huán)冷卻水系統(tǒng)的污垢分析與研究[J];給水排水;2012年02期
5 王紹華;趙慶良;任艷琴;;再生水水質(zhì)對冷卻水系統(tǒng)結(jié)垢的影響研究[J];環(huán)境保護科學;2011年01期
6 呂翠美;吳澤寧;;區(qū)域水資源生態(tài)經(jīng)濟系統(tǒng)可持續(xù)發(fā)展評價的能值分析方法[J];系統(tǒng)工程理論與實踐;2010年07期
7 顧祥紅;張桂玲;;熱電廠利用再生水的技術經(jīng)濟性分析[J];建筑節(jié)能;2009年09期
8 戴鐵軍;程會強;;我國工業(yè)用水量分析與節(jié)水措施[J];工業(yè)水處理;2008年10期
9 李大鵬;黃勇;李偉光;;再懸浮條件下底泥中磷賦存形態(tài)的轉(zhuǎn)化研究[J];環(huán)境科學;2008年05期
10 徐青;吳怡;廖夢霞;鄧天龍;;水環(huán)境中氮磷形態(tài)分析方法研究進展[J];巖礦測試;2008年02期
相關碩士學位論文 前1條
1 辛玉琴;三門峽市城市污水再生利用研究[D];西安建筑科技大學;2008年
,本文編號:1850973
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1850973.html