室內(nèi)外空氣cVMS和BTEX被動(dòng)監(jiān)測方法研究與應(yīng)用
本文選題:被動(dòng)采樣 + 環(huán)狀揮發(fā)性甲基硅氧烷; 參考:《大連海事大學(xué)》2017年碩士論文
【摘要】:本研究選擇cVMS包括八甲基環(huán)四硅氧烷(D4),十甲基環(huán)五硅氧烷(D5),十二甲基環(huán)六硅氧烷(D6)和BTEX即苯系物包括苯乙烯,甲苯,乙基苯,間對-二甲苯,1,3,5-三甲基苯和苯作為目標(biāo)物,采用內(nèi)部填有200mg Tenax TA吸附劑的熱脫附不銹鋼管(TD管)作為被動(dòng)采樣器,建立了 TD管(Tenax TA)被動(dòng)采樣方法體系,cVMS和BTEX檢出限和定量限(μg tube-1)范圍分別為:4.49E-07至3.43E-06 和 1.50E-06 至 1.14E-05;被動(dòng)吸附速率 R(mL/min)范圍為:0.28-1.46;t25和t95(天)范圍分別為10-51和101-532;采樣效率(計(jì)算值/理論值)范圍為:0.5-2.78;儲(chǔ)存樣品檢測值和儲(chǔ)存時(shí)間之間關(guān)系曲線符合Boltzmann方程,R2值在0.92-0.98之間。采用主動(dòng)和被動(dòng)方法監(jiān)測家庭、辦公和室外環(huán)境空氣中cVMS和BTEX濃度,得到主動(dòng)與被動(dòng)濃度關(guān)系式為y=0.8033x+0.156,R2為0.8893,被動(dòng)與主動(dòng)監(jiān)測方法匹配度達(dá)到89%。利用被動(dòng)監(jiān)測方法分別對Li家和Xiong家兩個(gè)家庭及其家用轎車、停車場、和家庭室外,以及校園內(nèi)的男寢、女寢、學(xué)生辦公室、教師辦公室、校園室外環(huán)境和海大實(shí)習(xí)船船員室、主機(jī)艙、輔機(jī)艙環(huán)境空氣中的cVMS和BTEX進(jìn)行了監(jiān)測。在家庭環(huán)境中cVMS,Xiong家的濃度高于Li家,其中D5濃度達(dá)到1個(gè)數(shù)量級(jí),而BTEX,Xiong家的濃度明顯低于Li家,除苯乙烯和苯外其余目標(biāo)物濃度均低于1個(gè)數(shù)量級(jí);在校園環(huán)境中cVMS,女生寢室濃度均高于其他采樣點(diǎn),其中D5高出室外192倍,對于BTEX,男生寢室均高于其他采樣點(diǎn),其中甲苯是室外的22.86倍;在船艙環(huán)境中cVMS,輔機(jī)艙內(nèi)D4和D5濃度高于主機(jī)艙高于船員室,而船員室D6濃度高于輔機(jī)艙高于主機(jī)艙,對于BTEX,主機(jī)艙濃度均為最高,其次是船員室,最后是輔機(jī)艙。通過比值方法分析,個(gè)人護(hù)理品、涂料及溶劑的使用對環(huán)境中cVMS濃度具有一定的貢獻(xiàn)作用,而機(jī)動(dòng)車和氧化燃燒排放對BTEX有較大貢獻(xiàn)。根據(jù)監(jiān)測所得目標(biāo)物濃度,對D5、苯乙烯、甲苯、乙基苯、間,對-二甲苯和苯在室內(nèi)環(huán)境中的非致癌風(fēng)險(xiǎn)評估中,發(fā)現(xiàn)只有主機(jī)艙中苯的HQ值大于1,而對苯的致癌風(fēng)險(xiǎn)評估中,在Li-客廳、Xiong-客廳、男寢、女寢、船員室、辦公室、主機(jī)艙和輔機(jī)艙幾個(gè)室內(nèi)監(jiān)測點(diǎn)其Risk值均大于1E-06。主機(jī)艙內(nèi)苯對人體健康存在潛在的非致癌風(fēng)險(xiǎn),研究室內(nèi)空氣環(huán)境中苯對人體健康均存在潛在的致癌風(fēng)險(xiǎn)。
[Abstract]:In this study, cVMS including octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecylcyclohexasiloxane, dodecyl cyclohexasiloxane D6) and BTEX were selected as target compounds, that is, benzene series including styrene, toluene, ethyl benzene, p-xylene 1, 3-trimethyl benzene and benzene. The thermal desorption stainless steel tube TD tube filled with 200mg Tenax TA adsorbent was used as passive sampler. The detection limits and quantification limits (渭 g tube-1) of the passive sampling system of tenax TAax were established. The detection limits and quantification limits (渭 g tube-1) were: 1: 4.49E-07 to 3.43E-06 and 1.50E-06 to 1.14E-05; the range of passive adsorption rate was 0.28-1.46t25 and 101-532respectively; and the sampling efficiency was 101-532.The range of passive adsorption rate was 0.28-1.46t25 and 101-532respectively. The range of calculated value / theoretical value is in the range of: 0.5-2.78, and the relationship curve between the detection value and storage time of the stored sample is in accordance with the Boltzmann equation with R2 value of 0.92-0.98. Active and passive methods were used to monitor the concentration of cVMS and BTEX in the air of home, office and outdoor environment. The relationship between active and passive concentration was obtained as follows: YYI 0.8033x 0.156C R2 = 0.8893, and the match degree of passive monitoring method and active monitoring method reached 89893. Two families, Li and Xiong families, as well as their cars, parking lots and outdoor homes, as well as the male, female, student's offices, teachers' offices, outdoor environment on campus and the crew room of Haida Internship were studied by passive monitoring method, respectively. Main engine cabin, auxiliary engine room ambient air cVMS and BTEX were monitored. In the family environment, the concentration of cVMS-Xiong was higher than that of Li, and the concentration of D5 was 1 order of magnitude, while the concentration of BTEXX Xiong was obviously lower than that of Li, and the concentration of all the target compounds except styrene and benzene was lower than 1 order of magnitude. In the campus environment, the concentration of female dormitory was higher than that of other sampling points, and the concentration of D5 was 192 times higher than that of outdoor. For BTEX, boys' dormitory was higher than other sampling points, and toluene was 22.86 times of outdoor. In the cabin environment, the concentration of D4 and D5 in auxiliary cabin is higher than that in main cabin, while the concentration of D6 in crew room is higher than that in engine room. For BTEX, the concentration of main engine room is the highest, the next is crew room, and the last is auxiliary cabin. By ratio analysis, the use of personal care products, paints and solvents contributed to the concentration of cVMS in the environment, while motor vehicle and oxidative combustion emissions contributed significantly to BTEX. Based on the monitored target concentration, in the non-carcinogenic risk assessment of p-xylene, p-xylene and benzene in the indoor environment, it was found that only the HQ value of benzene in the mainframe cabin was greater than 1, and that in the carcinogenic risk assessment of p-benzene, only p-xylene and p-xylene were found in the risk assessment of benzene carcinogenesis. The Risk values of several indoor monitoring points in Li-sitting room, male, female, crew room, office, mainframe cabin and auxiliary engine room are all greater than 1E-06. Benzene in main engine room has potential non-carcinogenic risk to human health, and benzene in indoor air environment has potential carcinogenic risk to human health.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X831
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范亞維;周啟星;;BTEX的環(huán)境行為與生態(tài)毒理[J];生態(tài)學(xué)雜志;2008年04期
2 張俊剛;王躍思;吳方X;王珊;;北京市大氣中BTEX工作日與非工作日的濃度變化[J];環(huán)境化學(xué);2009年01期
3 任文杰;周啟星;王美娥;;BTEX在土壤中的環(huán)境行為研究進(jìn)展[J];生態(tài)學(xué)雜志;2009年08期
4 ;Remediation of BTEX-Contaminated Groundwater by Air Sparging:A Simulation Study[J];地學(xué)前緣;2009年S1期
5 孫杰;王躍思;吳方X;;北京市BTEX的污染現(xiàn)狀及變化規(guī)律分析[J];環(huán)境科學(xué);2011年12期
6 郭幻;姚俊;蔡珉敏;王靜偉;;BTEX混合物降解菌株的篩選及降解性能[J];石河子大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
7 趙珂;劉國;薛志鋼;支國瑞;付建;彭良梅;;大氣BTEX的時(shí)空分布與反應(yīng)特征及來源研究進(jìn)展[J];工業(yè)安全與環(huán)保;2013年04期
8 蘇燕;孫超;趙勇勝;周睿;王霄;生賀;;BTEX污染含水層中氧化還原環(huán)境的空間變化[J];土木建筑與環(huán)境工程;2014年02期
9 王萍;周啟星;;BTEX污染環(huán)境的修復(fù)機(jī)理與技術(shù)研究進(jìn)展[J];生態(tài)學(xué)雜志;2009年02期
10 孫威;趙勇勝;楊玲;馬百文;;過硫酸鹽活化技術(shù)處理地下水中的BTEX及其動(dòng)力學(xué)[J];安徽農(nóng)業(yè)大學(xué)學(xué)報(bào);2012年03期
相關(guān)會(huì)議論文 前7條
1 韓麗;鄧?yán)?何敏;馮小瓊;王幸銳;;成都市大氣中BTEX的污染特征研究[A];2014中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)(第六章)[C];2014年
2 王萍;周啟星;;BTEX對水生植物金錢草的生長及生理生態(tài)效應(yīng)研究[A];第五屆全國環(huán)境化學(xué)大會(huì)摘要集[C];2009年
3 李爽;白鴿;沈?qū)W優(yōu);;杭州市居民家庭空氣中的BTEX污染[A];第五屆全國環(huán)境化學(xué)大會(huì)摘要集[C];2009年
4 Hui Huang;Guiping Wu;Chuan Yi;;Studying the Adsorption Performance in Binding of BTEX in the Air by Activated Carbon[A];中國材料大會(huì)2012第4分會(huì)場:環(huán)境功能材料論文集[C];2012年
5 曾冬輝;賓麗英;謝光炎;;BTEX的微生物降解機(jī)制及研究進(jìn)展[A];2013中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五卷)[C];2013年
6 秦俊杰;尹冬勤;黃躍飛;;基于PAT修復(fù)物理試驗(yàn)的BTEX遷移轉(zhuǎn)化模擬及過程控制思路[A];第二十三屆全國水動(dòng)力學(xué)研討會(huì)暨第十屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集[C];2011年
7 楊姝倩;李法云;馬溪平;譙興國;張營;李素玉;;石油污染土壤中微生物對BTEX的降解能力研究[A];第十次全國環(huán)境微生物學(xué)術(shù)研討會(huì)論文摘要集[C];2007年
相關(guān)博士學(xué)位論文 前2條
1 劉秀麗;地下水中BTEX的遷移規(guī)律及其原位生物修復(fù)技術(shù)研究[D];天津大學(xué);2010年
2 馬燕;河流滲濾系統(tǒng)中BTEX污染去除機(jī)理研究[D];中國地質(zhì)大學(xué)(北京);2011年
相關(guān)碩士學(xué)位論文 前10條
1 欒曉新;室內(nèi)外空氣cVMS和BTEX被動(dòng)監(jiān)測方法研究與應(yīng)用[D];大連海事大學(xué);2017年
2 胡桂全;BTEX在含水層中遷移轉(zhuǎn)化規(guī)律研究[D];吉林大學(xué);2009年
3 黃方圓;麥飯石填料強(qiáng)化好氧生物去除地下水中BTEX的研究[D];中國地質(zhì)大學(xué)(北京);2013年
4 孫本山;可吸附生物反應(yīng)墻修復(fù)地下水中BTEX[D];合肥工業(yè)大學(xué);2014年
5 李潘;苯系物(BTEX)在新疆干旱區(qū)土壤中的環(huán)境化學(xué)行為及其影響因素研究[D];新疆大學(xué);2014年
6 張倩;高鹽條件BTEX降解菌群多樣性、降解基因型及相容性溶質(zhì)分析[D];華東理工大學(xué);2012年
7 孫文靜;BTEX降解菌的馴化及其好氧降解規(guī)律的研究[D];天津大學(xué);2009年
8 趙妍;地下環(huán)境中BTEX的揮發(fā)特性及其對AS影響研究[D];吉林大學(xué);2009年
9 李敬杰;微生物異化還原Fe(III)耦合氧化BTEX研究[D];吉林大學(xué);2012年
10 毛心慰;BTEX嗜鹽降解細(xì)菌的多樣性及降解特性的初步研究[D];清華大學(xué);2008年
,本文編號(hào):1846826
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1846826.html