無(wú)機(jī)砷在牟氏角毛藻中的化學(xué)行為及其毒理效應(yīng)
本文選題:無(wú)機(jī)砷 + 牟氏角毛藻; 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:砷是一種較常見(jiàn)且持久性的污染物,可以被海洋生物富集并通過(guò)食物鏈傳遞,海產(chǎn)品中的高含量砷已引起人們的普遍關(guān)注。砷在海洋環(huán)境中有多種存在形態(tài),主要分為無(wú)機(jī)砷和有機(jī)砷兩大類(lèi),其對(duì)海洋生物的毒性作用受砷形態(tài)的影響,不同砷形態(tài)的化合物毒性各不相同,現(xiàn)在一般認(rèn)為砷的毒性級(jí)別是無(wú)機(jī)砷有機(jī)砷,無(wú)機(jī)砷中As(III)As(V),但是對(duì)于不同生物砷化物的毒性也存在一定特異性。牟氏角毛藻(Chaetoceros mulleri)作為海洋浮游植物中的優(yōu)勢(shì)種群,可以對(duì)環(huán)境變化快速響應(yīng),是研究海洋環(huán)境污染與全球氣候變化的重要生物種類(lèi),具有重要的研究?jī)r(jià)值。本文研究了無(wú)機(jī)砷As(III、V)暴露及其與海水酸化耦合對(duì)牟氏角毛藻生長(zhǎng)、光合的影響,查明了牟氏角毛藻對(duì)無(wú)機(jī)砷的富集與轉(zhuǎn)化及其基因組DNA甲基化水平的變化。主要結(jié)果如下:1、無(wú)機(jī)砷暴露對(duì)牟氏角毛藻生長(zhǎng)、光合作用的影響。(1)對(duì)其生長(zhǎng)的影響:As(III)暴露使牟氏角毛藻生長(zhǎng)率隨著時(shí)間呈下降趨勢(shì),暴露濃度低于1000μmol/L時(shí),牟氏角毛藻生長(zhǎng)率隨砷濃度的升高呈下降趨勢(shì);濃度高于1000μmol/L時(shí),在初期牟氏角毛藻生長(zhǎng)率隨砷濃度升高而升高,隨著實(shí)驗(yàn)進(jìn)行,生長(zhǎng)率下降。300μmol/L As(III)暴露48h時(shí),藻體生長(zhǎng)率降至0以下。(2)對(duì)其葉綠素a含量和葉綠素?zé)晒鈪?shù)的影響:As(III)暴露使牟氏角毛藻葉綠素a含量隨時(shí)間下降,但是變化不顯著(P0.05);而隨著砷濃度升高,葉綠素a含量整體呈下降趨勢(shì);As(III)暴露濃度低于70μmol/L條件下,牟氏角毛藻最大光能轉(zhuǎn)化效率(Fv/Fm)和實(shí)際光能轉(zhuǎn)化效率(Yield)隨時(shí)間變化不顯著,但砷濃度高于70μmol/L時(shí)對(duì)藻細(xì)胞熒光參數(shù)有顯著的抑制作用。As(V)暴露同樣導(dǎo)致牟氏角毛藻的生長(zhǎng)率隨著時(shí)間呈下降趨勢(shì)。低濃度As(V)對(duì)牟氏角毛藻生長(zhǎng)率無(wú)明顯影響,且As(III)暴露濃度在120μmol/L時(shí),藻的生長(zhǎng)率迅速下降,在濃度為300μmol/L時(shí)又緩慢上升。但在實(shí)驗(yàn)濃度范圍內(nèi),As(V)暴露時(shí),牟氏角毛藻生長(zhǎng)率均大于0;而對(duì)葉綠素a含量和葉綠素?zé)晒鈪?shù)都無(wú)顯著影響。結(jié)果表明,無(wú)機(jī)砷As(III)和As(V)對(duì)牟氏角毛藻的生長(zhǎng)具有不同的影響,其抑制作用表現(xiàn)為As(III)As(V)。2、無(wú)機(jī)砷與海水酸化共同作用對(duì)牟氏角毛藻生長(zhǎng)、光合作用的影響。(1)As(III)與海水酸化共同作用對(duì)牟氏角毛藻生長(zhǎng)、光合作用的影響:As(III)暴露與海水酸化耦合作用于牟氏角毛藻時(shí),藻的生長(zhǎng)率隨CO2濃度升高而升高,但是升高的趨勢(shì)隨As(III)濃度的增加越來(lái)越弱。當(dāng)海水酸化單獨(dú)作用時(shí),牟氏角毛藻中葉綠素a的含量和熒光參數(shù)Fv/Fm和Yield無(wú)顯著變化;當(dāng)與As(III)共同作用條件下,通入1000ppm CO2時(shí),藻體中葉綠素a含量隨時(shí)間變化波動(dòng)較大,且隨As(III)濃度升高熒光參數(shù)Fv/Fm和Yield明顯下降,但下降的趨勢(shì)減弱。(2)As(V)與海水酸化共同作用對(duì)牟氏角毛藻生長(zhǎng)、光合作用的影響:As(V)暴露與海水酸化耦合作用時(shí),藻的生長(zhǎng)率和葉綠素a含量在砷試驗(yàn)范圍內(nèi)無(wú)顯著變化,而葉綠素?zé)晒鈪?shù)Fv/Fm和Yield在As(V)暴露96h時(shí)表現(xiàn)為隨CO2濃度增大而顯著下降。結(jié)果表明,海水酸化可以促進(jìn)牟氏角毛藻的生長(zhǎng),無(wú)機(jī)砷與海水酸化共同脅迫時(shí),這種促進(jìn)作用減弱;在低濃度無(wú)機(jī)砷時(shí),葉綠素?zé)晒鈪?shù)Fv/Fm和Yield降低,但是所有實(shí)驗(yàn)中As(III)對(duì)藻細(xì)胞生長(zhǎng)和葉綠素?zé)晒鈪?shù)的抑制作用均比As(V)強(qiáng)。3、牟氏角毛藻對(duì)無(wú)機(jī)砷的生物富集與形態(tài)轉(zhuǎn)化。As(III)暴露時(shí),牟氏角毛藻對(duì)砷的富集量總體上隨As(III)濃度的增大而增加,但是在As(III)濃度為100μmol/L時(shí)下降。牟氏角毛藻中砷的富集量y(μg/105cells)與暴露As(III)的濃度x(μmol/L)可推導(dǎo)為二次多項(xiàng)式y(tǒng)=8×107x2+0.004x+3.3143。在96h,在較低暴露濃度組(50-300μmol/L),藻細(xì)胞中As(V)占總砷的比例隨著暴露濃度的升高呈增加的趨勢(shì);但在高濃度組(500-7000μmol/L),隨著暴露濃度增加藻細(xì)胞中As(V)的比例變化不明顯,但1000μmol/L暴露組為最大值。As(V)暴露時(shí),牟氏角毛藻中砷的富集量y(μg/105cells)與暴露As(V)的濃度x(μmol/L)也可推導(dǎo)為二次多項(xiàng)式方程y=-1×10-5x2+0.078x+13.015,在實(shí)驗(yàn)濃度范圍內(nèi)富集量最大值達(dá)171.10μg/105cells。牟氏角毛藻對(duì)As(V)形態(tài)的轉(zhuǎn)化作用不明顯。4、無(wú)機(jī)砷暴露對(duì)藻細(xì)胞基因組DNA甲基化水平的影響。研究表明,一定濃度范圍的As(III、V)暴露可以引起DNA甲基化水平明顯升高,但長(zhǎng)期暴露高濃度As(III)后DNA甲基化水平則與對(duì)照無(wú)顯著差異。
[Abstract]:Arsenic is a more common and persistent pollutant, which can be enriched by marine organisms and passed through the food chain. The high content of arsenic in marine products has attracted widespread attention. Arsenic in the marine environment is mainly divided into two major categories: inorganic and organic arsenic. The toxicity of arsenic to marine organisms is affected by arsenic form. The toxicity of the compounds with different arsenic forms is different. Now it is generally believed that the toxicity grade of arsenic is organic arsenic of inorganic arsenic, As (III) As (V) in inorganic arsenic, but it also has certain specificity for the toxicity of different biological arsenide. The Chaetoceros mulleri (Chaetoceros mulleri) is the dominant species in marine phytoplankton, and can change the environment quickly. The rapid response, which is an important biological species for the study of marine environmental pollution and global climate change, has important research value. In this paper, the exposure of As (III, V) and its coupling with sea water acidification on the growth and Photosynthesis of M. montae were studied, and the enrichment and transformation of the inorganic arsenic in monk's horn and its genomic DNA methylation water were found out. The main results were as follows: 1, the effect of the exposure of inorganic arsenic on the growth and Photosynthesis of monzolus monkhae. (1) the growth rate of As (III) exposure made the growth rate of Mu's horns descended with time and the exposure concentration was lower than 1000 u mol/L, and the growth rate of Mao Zao of monkhorus monkhorus decreased with the increase of arsenic concentration; the concentration was higher than 1000. In the initial stage, the growth rate of Mu mol/L increased with the increase of arsenic concentration. When the experiment was carried out, the growth rate of.300 mu mol/L As (III) was reduced to less than 0. (2) the effects of the chlorophyll a content and chlorophyll fluorescence parameters on its chlorophyll a content and chlorophyll fluorescence parameters: As (III) exposure made the content of chlorophyll a content decreased with time, but changed, but changed with time. However, the content of chlorophyll a decreased with the increase of arsenic concentration, and the maximum light energy conversion efficiency (Fv/Fm) and actual light conversion efficiency (Yield) of As (III) exposed to As (III) were not significant, but the fluorescence parameters of algae cells were significantly higher than that of 70 u mol/L when the concentration of As (As) was higher than that of the time. The inhibitory effect of.As (V) exposure also resulted in a downward trend in the growth rate of monzolus monzoliti with time. Low concentration of As (V) had no obvious effect on the growth rate of Mu's horn, and when As (III) exposure concentration was 120 u mol/L, the growth rate of algae declined rapidly and increased slowly at the concentration of 300 u mol/L, but in the range of experimental concentration, As (V) was exposed, The growth rate of Mu's angle hair algae was greater than 0, but had no significant influence on chlorophyll a content and chlorophyll fluorescence parameters. The results showed that inorganic arsenic As (III) and As (V) had different effects on the growth of Mu's horn. The inhibition effect was As (III) As (V).2, and the combination of inorganic arsenic and seawater acidification on the growth and Photosynthesis of monk's horn (1) (1) the effect of As (III) and seawater acidification on the growth of Mu's horns and the effect of photosynthesis: when As (III) exposure and sea water acidification are used for the use of the alga monkspa, the growth rate of the algae increases with the increase of CO2 concentration, but the trend of the increase is weaker with the increase of As (III) concentration. There was no significant change in the chlorophyll a content and the fluorescence parameters Fv/Fm and Yield of Mao Zaozhong. When the As (III) was combined with 1000ppm CO2, the content of chlorophyll a in the algae fluctuated with the time, and the fluorescence parameter Fv/Fm and Yield decreased with the increase of As (III) concentration, but the decline was weakened. (2) together with the acidification of sea water The effect on the growth and Photosynthesis of Mu's horn: when As (V) exposure is coupled with the acidification of sea water, there is no significant change in the growth rate of algae and the content of chlorophyll a in the range of arsenic test, while the chlorophyll fluorescence parameters Fv/Fm and Yield significantly decrease with the increase of CO2 concentration when As (V) is exposed to 96h. The results show that the acidification of sea water can be obtained. To promote the growth of Mu's horn, the promotion effect was weakened when the inorganic arsenic and sea water acidification were co coercion, and the chlorophyll fluorescence parameters Fv/Fm and Yield decreased in the low concentration of inorganic arsenic, but the inhibitory effect of As (III) on the growth of algae cells and the chlorophyll fluorescence parameters in all experiments were stronger than that of As (V), and the production of inorganic arsenic from monzolus monacolus. The concentration of.As (III) increased with the increase of As (III) concentration, but decreased when the concentration of As (III) was 100 mu mol/L. The concentration x (mu g/105cells) of Mao Zaozhong arsenic in Mu's angle and the concentration x (MU) of exposed As (III) could be deduced to two times polynomial. In 96h, the ratio of As (V) to total arsenic in the algal cells increased with the increase of exposure concentration in the lower exposure concentration group (50-300 mu mol/L), but in the high concentration group (500-7000 mu mol/L), the proportion of As (V) in the algal cells increased with the increase of exposure concentration, but the 1000 mu mol/L exposed group was the maximum.As (V) exposure, in the monk's horn. The concentration of arsenic concentration y (mu g/105cells) and exposed As (V) concentration x (mu mol/L) can also be derived from the two polynomial equation y=-1 x 10-5x2+0.078x+13.015. The maximum concentration of the concentration in the experimental concentration range is 171.10 mu. The transformation of As (V) is not obvious, and the inorganic arsenic exposure to the genome of the algae cell genome is not obvious. The study showed that the level of As (III, V) exposure in a certain concentration range could cause a significant increase in the level of DNA methylation, but the level of DNA methylation was not significantly different from that of the control after long-term exposure to high concentration of As (III).
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X173;X171.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐金濤;龐敏;馬新;毛雪薇;吳振興;陳洪舉;王燕;張學(xué)雷;;CO_2加富對(duì)塔瑪亞歷山大藻葉綠素?zé)晒鈪?shù)及產(chǎn)毒的影響[J];海洋與湖沼;2016年03期
2 薛培英;陳苗苗;耿麗平;趙全利;王亞瓊;;輪葉黑藻對(duì)無(wú)機(jī)砷的吸收和釋放[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2015年10期
3 姜恒;吳斌;閻冰;邢永澤;;桉樹(shù)葉水浸出液對(duì)2種海洋微藻生長(zhǎng)和葉綠素?zé)晒馓匦缘挠绊慬J];環(huán)境科學(xué)研究;2013年11期
4 張思宇;孫國(guó)新;賈炎;;海洋真核微藻Ostreococcus tauri對(duì)砷的解毒機(jī)制研究[J];環(huán)境科學(xué)學(xué)報(bào);2013年10期
5 樊香絨;尹黎燕;李偉;常鋒毅;;不同價(jià)態(tài)砷對(duì)斜生柵藻生長(zhǎng)及葉綠素?zé)晒獾挠绊慬J];水生態(tài)學(xué)雜志;2013年05期
6 楊美娜;楊瑰麗;郭濤;劉永柱;張建國(guó);陳志強(qiáng);王慧;;逆境脅迫下植物DNA甲基化及其在抗旱育種中的研究進(jìn)展[J];中國(guó)農(nóng)學(xué)通報(bào);2013年06期
7 努爾古麗·阿木提;陸海燕;努爾巴依·阿布都沙力克;布阿依先木;;重金屬污染下蘆葦葉片葉綠素含量的變化研究[J];北方園藝;2012年21期
8 丁兆坤;李虹輝;許友卿;;海洋酸化對(duì)海洋生物呼吸代謝的影響及機(jī)制[J];飼料工業(yè);2012年20期
9 李國(guó)忱;劉錄三;汪星;李黎;;硅藻在河流健康評(píng)價(jià)中的應(yīng)用研究進(jìn)展[J];應(yīng)用生態(tài)學(xué)報(bào);2012年09期
10 張靜;張振克;張?jiān)品?;海洋酸化及其對(duì)海洋生態(tài)系統(tǒng)的影響[J];海洋地質(zhì)前沿;2012年02期
相關(guān)博士學(xué)位論文 前2條
1 汪寧欣;無(wú)機(jī)砷在淡水浮游植物和動(dòng)物中的富集與毒性效應(yīng)研究[D];南京大學(xué);2014年
2 陳國(guó)梁;沉水植物對(duì)砷的富集特征及機(jī)理研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 馬麗;砷脅迫下3種水生植物砷形態(tài)的變化及影響因素[D];昆明理工大學(xué);2013年
2 郭婷婷;刺參不同組織基因組DNA甲基化狀態(tài)MSAP分析及HPLC方法的建立[D];上海海洋大學(xué);2013年
3 于洋;蜈蚣草植酸酶特性和抗氧化系統(tǒng)對(duì)砷脅迫的響應(yīng)研究[D];華中農(nóng)業(yè)大學(xué);2008年
4 梁秋菊;豬親本及其雜種DNA甲基化差異與雜種優(yōu)勢(shì)的關(guān)系[D];華中農(nóng)業(yè)大學(xué);2006年
5 陳儒;重金屬離子對(duì)沙角衣藻生長(zhǎng)的影響及沙角衣藻提取物的抑菌作用[D];四川大學(xué);2004年
6 褚武英;幾種重金屬在淡水動(dòng)物體內(nèi)的富集及其毒理研究[D];上海師范大學(xué);2003年
,本文編號(hào):1845634
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1845634.html