天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于BP神經(jīng)網(wǎng)絡(luò)的大氣污染物濃度預(yù)測

發(fā)布時間:2018-05-04 17:08

  本文選題:BP神經(jīng)網(wǎng)絡(luò) + MIV。 參考:《昆明理工大學(xué)》2017年碩士論文


【摘要】:近年來,空氣污染日漸成為一個嚴(yán)峻的問題。空氣質(zhì)量惡化對人身健康和環(huán)境存在巨大的或者潛在的危害。因此,大氣污染物濃度預(yù)報非常重要,它不僅對人們的日常生活有所幫助,而且對政府制定相關(guān)政策具有指導(dǎo)意義。2013年,國務(wù)院頒布了《大氣污染防治行動計劃》,要求各地建立監(jiān)測預(yù)警體系,京津冀、長三角、珠三角及其他省、副省級市、省會城市均包括在內(nèi)的城市或區(qū)域開展空氣質(zhì)量預(yù)報預(yù)警的工作。通過研究昆明市的污染物濃度預(yù)測模型,有助于昆明市空氣質(zhì)量預(yù)報預(yù)警工作的開展。以統(tǒng)計模型和機器學(xué)習(xí)模型為代表的非機理模型在污染物濃度預(yù)報中應(yīng)用廣泛,其中BP神經(jīng)網(wǎng)絡(luò)以其較強的非線性擬合能力在污染物濃度預(yù)測中廣泛應(yīng)用。本文利用BP神經(jīng)網(wǎng)絡(luò)結(jié)合變量篩選的方法建立了 SO2,NO2,O3,CO,PM10,PM2.5等6種污染物的濃度預(yù)測模型,并選取2014-1-1至2015-11-28時段,昆明市區(qū)6個環(huán)境監(jiān)測點6種污染物濃度的監(jiān)測數(shù)據(jù)建立了昆明市污染物均濃度預(yù)測模型。采用平均影響值(Mean Impact Value,MIV)的方法篩選出分別對6種污染物日濃度值有主要影響的變量,作為BP神經(jīng)網(wǎng)絡(luò)的輸入變量,利用建立的預(yù)測模型分別對6種污染物的日濃度進(jìn)行預(yù)測,并討論MIV的方法在濃度預(yù)測中應(yīng)用的可行性。(1)通過變量篩選的結(jié)果可以看出,前一日的其他污染物濃度對預(yù)報對象的濃度有較大影響;(2)BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測結(jié)果較好,預(yù)測的濃度水平和變化趨勢與實測值的變化吻合度較高。標(biāo)準(zhǔn)化平均偏差NMB均小于18,標(biāo)準(zhǔn)化平均誤差NMB均小于40,剩余標(biāo)準(zhǔn)差RMSE均小于30,相關(guān)系數(shù)R多大于0.6;(3)利用MIV方法對輸入變量篩選,有助于BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測精度的提高,個別模型如關(guān)上監(jiān)測點N02,CO,碧雞廣場SO2,龍泉鎮(zhèn)S02,呈貢新區(qū)SO2,東風(fēng)東路S02、03的預(yù)測模型并不能提高預(yù)測精度;(4)各污染物的IAQI分指數(shù)的準(zhǔn)確率較高,可以達(dá)到70%以上,首要污染物的準(zhǔn)確可以達(dá)到50%左右,各點位的AQI均可達(dá)到65%以上。
[Abstract]:Air pollution has become a serious problem in recent years. The deterioration of air quality has great or potential harm to physical health and environment. Therefore, it is very important to predict the concentration of air pollutants. It is not only helpful to people's daily life, but also has a guiding significance for the government to make relevant policies for.2013 years, the State Council The action plan for the prevention and control of air pollution has been promulgated, which requires the establishment of monitoring and early warning system in all parts of the city, the Beijing Tianjin Hebei, the Yangtze River Delta, the Pearl River Delta and other provinces, the sub provincial cities and the provincial capital cities to carry out the air quality prediction and early warning in the cities and regions, which are included in the city and the provinces. The study of the pollutant concentration prediction model in Kunming will help the air quality in Kunming. The non mechanism model, represented by statistical model and machine learning model, is widely used in the prediction of pollutant concentration. The BP neural network is widely used in the prediction of pollutant concentration with its strong nonlinear fitting ability. In this paper, the method of BP neural network network combined with variable selection is used to establish SO2, NO 2, O3, CO, PM10, PM2.5, and other 6 kinds of pollutant concentration prediction model, and select the 2014-1-1 to 2015-11-28 period, the monitoring data of 6 pollutants concentration in 6 environmental monitoring points in Kunming City, establish the prediction model of the average concentration of pollutants in Kunming city. The average influence value (Mean Impact Value, MIV) is used to screen the daily concentration of 6 kinds of pollutants respectively. The variable which has the main influence on the degree value, as the input variable of the BP neural network, uses the established prediction model to predict the daily concentration of the 6 pollutants respectively, and discusses the feasibility of the application of the MIV method in the concentration prediction. (1) through the results of variable selection, it can be seen that the concentration of other pollutants on the previous day has the concentration of the forecast object. It has great influence; (2) the prediction results of BP neural network model are better. The predicted concentration level and change trend coincide with the measured values. The standard average deviation NMB is less than 18, the standard average error NMB is less than 40, the residual standard difference RMSE is less than 30, the relative number R is more than 0.6; (3) the MIV method is used to screen the input variable sieve. Selection is helpful to improve the prediction accuracy of BP neural network model. Some models, such as monitoring point N02, CO, BBI square SO2, Longquan town S02, Chenggong New Area SO2, Dongfeng East Road S02,03 prediction model, can not improve the prediction accuracy. (4) the accuracy of IAQI sub index of each pollutant is higher than 70%, and the primary pollutant is accurate. At about 50%, the AQI of each point can reach more than 65%.

【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫f,

本文編號:1843862


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1843862.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a8f4e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产精品国产亚洲区久久| 欧美日韩亚洲精品在线观看| 欧美黑人黄色一区二区| 老司机精品视频免费入口| 欧美日韩亚洲精品内裤| 国产一级精品色特级色国产| 正在播放国产又粗又长| 日本av一区二区不卡| 四季av一区二区播放| 视频一区中文字幕日韩| 精产国品一二三区麻豆| 色综合视频一区二区观看| 亚洲午夜福利不卡片在线 | 草草草草在线观看视频| 激情内射亚洲一区二区三区| 亚洲欧美黑人一区二区| 国产又大又硬又粗又黄| 亚洲一区二区三区精选| 国产成人精品在线播放| 中文字幕欧美精品人妻一区| 色丁香一区二区黑人巨大| 国产av精品高清一区二区三区| 91香蕉国产观看免费人人| 久久这里只有精品中文字幕| 欧美一区二区三区性视频| 日韩人妻欧美一区二区久久| 日韩三级黄色大片免费观看| 国产极品粉嫩尤物一区二区| 精品国产亚洲免费91| 欧美中文日韩一区久久| 午夜成年人黄片免费观看| 久久本道综合色狠狠五月| 欧美精品中文字幕亚洲| 激情图日韩精品中文字幕| 无套内射美女视频免费在线观看 | 欧美日韩精品综合一区| 黄男女激情一区二区三区| 国产大屁股喷水在线观看视频| 激情五月综五月综合网| 老司机精品一区二区三区| 国产精品久久精品毛片|