基于微乳化調(diào)質(zhì)預(yù)處理的含油污泥分離特性試驗(yàn)研究
本文選題:含油污泥 + 微乳液; 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:作為世界第二大石油資源消耗國,我國的石油需求量和消耗量在逐年攀升。而在石油的開采、儲(chǔ)運(yùn)、煉制等過程中,不可避免地會(huì)產(chǎn)生含油固體廢棄物,即含油污泥。據(jù)統(tǒng)計(jì),我國每年產(chǎn)生的含油污泥將超過500萬噸。含油污泥是一種危險(xiǎn)廢棄物,已被列入《國家危險(xiǎn)廢物名錄》,必須對其進(jìn)行妥善處置。同時(shí),含油污泥的含油率較高,可回收其中的油分對其進(jìn)行資源化利用。作為一種發(fā)展較為成熟的油泥資源化處理方式,離心分離具有操作簡單、清潔低耗等優(yōu)點(diǎn),適合油泥資源化處理的工業(yè)化應(yīng)用。然而油泥是一種油包水(W/O)型乳化液,黏度高,流動(dòng)性差,不利于處理過程中的輸送。而且油泥中的油-水乳化穩(wěn)定,給離心脫水過程帶來了很大的困難。為了獲得高的離心分離效率,必須對離心分離之前的油泥進(jìn)行預(yù)處理來破乳,達(dá)到降黏、增強(qiáng)脫水的目的。本文提出一種新的調(diào)質(zhì)預(yù)處理方法-微乳化法,即利用微乳液具有超低的界面張力的特性對油泥進(jìn)行破乳,主要圍繞降低含油污泥黏度和脫除含油污泥中的乳化水兩個(gè)方面開展了實(shí)驗(yàn)研究,得到的主要結(jié)果和結(jié)論如下:(1)對油泥原樣的黏度特性進(jìn)行分析發(fā)現(xiàn),油泥屬于典型的非牛頓流體,具有假塑性流體的特征,而且油泥的剪切稀釋行為較一般稠油表現(xiàn)的更為明顯。含有較多的膠質(zhì)和瀝青質(zhì)等重質(zhì)組分形成的大分子結(jié)構(gòu)促進(jìn)了油泥W/O型乳化液的穩(wěn)定,油泥的W/O乳化狀態(tài)是油泥表現(xiàn)出高黏特性的根本原因。采用流變模型對油泥的流變曲線進(jìn)行擬合,結(jié)果顯示P-L模型比較適合用來描述國煉油泥的流變行為。(2)考察了微乳液添加量、不同表面活性劑、表面活性劑復(fù)配對降黏效果的影響,結(jié)果表明:微乳液添加量為25%時(shí),用SDBS作為表面活性劑,微乳液的降黏效果最好。降黏率達(dá)95%以上,尤其在99s-1下達(dá)到99.215%,油泥的流動(dòng)性有了很大改善。綜合考慮降黏效果和經(jīng)濟(jì)性,適宜選用SDBS和OP-10。用OP-10和SDBS按一定比例復(fù)配的表面活性劑較兩者單獨(dú)使用時(shí)的降黏效果要好,而且經(jīng)濟(jì)性得到提高。其中比例為2:1的降黏效果最佳,99 s-1下的降黏率可達(dá)99.436%。(3)通過DSC分析獲得了添加微乳液預(yù)處理前后油泥樣品離心分離各層的含水率及乳化水粒徑變化,研究發(fā)現(xiàn)在一定離心參數(shù)下,由于油泥的乳化穩(wěn)定性高,單純的離心分離不能使油泥中的乳化水滴沉降。添加徽乳液預(yù)處理后,降低了油-水界面張力,油-水界面膜被破壞,經(jīng)離心分離后,乳化水滴聚并沉積到下層得以脫除。(4)研究了微乳液中油相、助表面活性劑及表面活性劑復(fù)配對脫水效果的影響,結(jié)果表明:煤油為油相,正丁醇為助表面活性劑時(shí),脫水率最高,可達(dá)94.60%。陽離子表面活性劑CTAB與非離子表面活性劑NP-10按1:6的比例進(jìn)行復(fù)配時(shí)的脫水率為95.23%,要高于相同條件下單獨(dú)使用NP-10作為表面活性劑的脫水率78.94%。通過2DNOESY核磁實(shí)驗(yàn)確定了兩種復(fù)配的表面活性劑之間的相互作用點(diǎn),這種相互作用使得復(fù)配的表面活性劑體系表面活性更高,更容易降低油-水界面張力,因此可以得到更好的破乳效果。
[Abstract]:As the second largest oil resource consuming country in the world, our country's oil demand and consumption are increasing year by year. In the process of oil mining, storage, transportation and refining, oil containing solid waste, that is oil sludge, is inevitable. According to statistics, the oil sludge will exceed 5 million tons per year in China. Oily sludge is a dangerous waste. The abandoned material, which has been listed in the national hazardous waste list, must be disposed of properly. At the same time, the oil content of the oily sludge is high, and the oil can be recycled. As a more mature way to treat the sludge, the centrifugal separation has the advantages of simple operation, low consumption and so on. It is suitable for the oil sludge resources. However, the oil sludge is a W/O type emulsion with high viscosity and poor fluidity, which is not conducive to transportation in the process. Moreover, the oil water emulsification in the oil sludge is stable, which brings great difficulties to the centrifugal dehydration process. In order to obtain high centrifugal separation efficiency, the sludge before centrifuge separation must be pretreated. In order to reduce the viscosity and enhance dehydration, a new quenching and tempering pretreatment method, microemulsion method, is proposed in this paper, that is, using the characteristics of ultra-low interfacial tension in microemulsion to demulsify oil sludge, mainly around two aspects of reducing the viscosity of oily sludge and removing the emulsified water from oily sludge. The main results and conclusions are as follows: (1) the analysis of the viscosity characteristics of the original oil sludge shows that the oil sludge belongs to the typical non Newtonian fluid and has the characteristics of pseudoplastic fluid, and the shear dilution behavior of the oil sludge is more obvious than that of the ordinary heavy oil. The large molecular structure of heavy components, such as many resins and asphaltenes, is promoted. The W/O emulsion is stable, the W/O emulsification of the sludge is the fundamental reason for the high viscosity of the sludge. The rheological model is used to fit the rheological curve of the sludge. The results show that the P-L model is suitable for describing the rheological behavior of the oil sludge. (2) the addition amount of microemulsion, the surface active agent and the surface activity are investigated. The effect of agent complex pairing on viscosity reduction shows that the viscosity reduction effect of microemulsion is best when the addition of microemulsion is 25% and SDBS is used as surfactant. The viscosity reduction rate is over 95%, especially under 99s-1, and the fluidity of the sludge is greatly improved. The efficiency and economy of viscosity reduction and the use of OP-10 and S for SDBS and OP-10. are considered. The viscosity reduction effect of DBS in a certain proportion is better than that used alone, and the economy is improved. The viscosity reduction effect of 2:1 is the best, the viscosity reduction rate under 99 S-1 can reach 99.436%. (3) through DSC analysis, the moisture content and emulsification of the centrifuge separation layers of the samples before the microemulsion pre treatment are obtained. With the change of water particle size, it is found that under certain centrifugal parameters, the emulsion droplets in the sludge can not be settled because of the high emulsifying stability of the oil sludge. The interfacial tension of oil water interface is reduced after the addition of emblem emulsion, and the oil water boundary mask is destroyed. After centrifugation, the emulsified water droplets gather and be removed to the lower layer to be removed. (4) The effect of oil phase, surface active agent and surface active agent on the dehydration effect of microemulsion was studied. The results showed that the dehydration rate was the highest when kerosene was oil phase and n-butanol as the surfactants. The dehydration rate of 94.60%. cationic surfactant CTAB and non ionic surfactant NP-10 according to the proportion of 1:6 was 95.23%, The dehydration rate of NP-10 as an active agent under the same condition is higher than that of 78.94%.. The interaction point between two kinds of compound surfactants is determined by the 2DNOESY NMR test. This interaction makes the compound surface active agent system more active and easier to reduce the oil water interfacial tension. Good demulsification.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X74
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 毛飛燕;楊潔;黃群星;韓旭;池涌;嚴(yán)建華;;含油污泥2級分離系統(tǒng)集成及處理工藝優(yōu)化[J];環(huán)境工程學(xué)報(bào);2016年09期
2 閻松;邵魯華;蔡凌云;郭鐵;蘇振生;;油田脫油油泥離心處理的研究[J];石油化工高等學(xué)校學(xué)報(bào);2015年04期
3 龔翔;張軍;唐軍;臧曉剛;盧盛燦;;電破乳方法研究[J];能源與環(huán)境;2015年02期
4 劉宇程;徐俊忠;陳鳳;陳明燕;;粉煤灰復(fù)合固化劑處理含油污泥實(shí)驗(yàn)研究[J];環(huán)境工程;2014年05期
5 余蘭蘭;宋健;鄭凱;郭磊;;熱洗法處理含油污泥工藝研究[J];化工科技;2014年01期
6 郝堅(jiān);裴潤有;楊樹成;;含油污泥特性指標(biāo)分析[J];油氣田環(huán)境保護(hù);2013年06期
7 宿輝;王玉;朱凱;徐菲;朱衛(wèi)菊;;含油污泥三相離心分離處理技術(shù)研究[J];環(huán)?萍;2013年06期
8 鄒華;李春曉;梅平;王占生;曾浩見;劉鵬;劉光全;;落地油泥清洗后的污水絮凝處理試驗(yàn)研究[J];長江大學(xué)學(xué)報(bào)(自科版);2013年32期
9 張東生;陳爽;劉濤;張宇寒;;含油污泥微乳化處理工藝研究[J];環(huán)境工程;2013年05期
10 楊志剛;劉立;;含油污泥超聲除油實(shí)驗(yàn)研究[J];石油石化節(jié)能與減排;2013年03期
,本文編號:1835155
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1835155.html