Fenton氧化法—水解酸化法預(yù)處理巰基丙酸廢水的實(shí)驗(yàn)研究
本文選題:巰基丙酸廢水 + Fenton氧化法。 參考:《重慶三峽學(xué)院》2017年碩士論文
【摘要】:巰基丙酸是一種重要的精細(xì)化工產(chǎn)品,在其生產(chǎn)過(guò)程中產(chǎn)生了大量高濃度難降解有機(jī)廢水,這種高濃度難降解有機(jī)廢水是廢水處理的一大難點(diǎn)。本研究主要針對(duì)此疏基丙酸廢水難處理這一問(wèn)題,對(duì)其生物處理前的預(yù)處理工藝進(jìn)行實(shí)驗(yàn)研究。同時(shí)針對(duì)實(shí)際廢水內(nèi)含F(xiàn)e2+的特征,提出將Fenton氧化技術(shù)與水解酸化技術(shù)聯(lián)合應(yīng)用于疏基丙酸廢水的預(yù)處理。研究?jī)?nèi)容主要包括:Fenton氧化技術(shù)的最佳運(yùn)行條件及處理效果、Fenton氧化技術(shù)的動(dòng)力學(xué)實(shí)驗(yàn)、水解酸化工藝對(duì)Fenton氧化出水處理的最佳運(yùn)行條件及效果,最后針對(duì)聯(lián)合工藝預(yù)處理之后的出水進(jìn)行了初步的后續(xù)生化實(shí)驗(yàn)研究,本研究以COD作為水質(zhì)的主要評(píng)價(jià)指標(biāo)。Fenton氧化技術(shù)預(yù)處理巰基丙酸廢水單因素實(shí)驗(yàn),確定了 Fenton氧化法的最佳運(yùn)行參數(shù):30%H2O2投加量為1/6Qth(34.8mL/L),分三次投加,pH值為4,反應(yīng)時(shí)間為120min,廢水COD去除率為92.96%。正交實(shí)驗(yàn)結(jié)果表明,各因素對(duì)出水COD的影響主次順序?yàn)?pH值H202投加量反應(yīng)時(shí)間投加方式。最優(yōu)組合為pH值為4.0,反應(yīng)時(shí)間為90min,H2O2投加量為1/6Qth(34.8ml/L),分三次投加,COD去除率可達(dá)到90%。Fenton氧化法降解COD動(dòng)力學(xué)研究表明,Fenton氧化反應(yīng)基本符合二級(jí)反應(yīng)動(dòng)力學(xué)規(guī)律。通過(guò)實(shí)驗(yàn)數(shù)據(jù)的分析和計(jì)算得到Fenton氧化法降解巰基丙酸廢水的動(dòng)力學(xué)模型。研究了不同pH值、容積負(fù)荷、水力停留時(shí)間對(duì)水解酸化工藝處理Fenton氧化出水效果的影響。結(jié)果表明,pH=7時(shí),COD去除效果最好,平均去除率達(dá)到9.3%,最高可達(dá)13.5%;在最佳pH條件下,反應(yīng)器經(jīng)過(guò)5次負(fù)荷沖擊,隨著進(jìn)水COD濃度的增大,營(yíng)養(yǎng)物質(zhì)增多,微生物活性增強(qiáng),COD去除率增大,呈上升趨勢(shì),在第8天去除率達(dá)到最大值,隨后由于化工廢水毒性的積累,導(dǎo)致微生物活性和降解能力下降,從而使COD去除率又呈下降趨勢(shì),最終反應(yīng)器內(nèi)微生物與有毒物質(zhì)的積累達(dá)到平衡狀態(tài),廢水COD去除率達(dá)到15%。隨著反應(yīng)時(shí)間的增加,在反應(yīng)前4h內(nèi),COD去除率極速增大,之后增加緩慢,當(dāng)反應(yīng)時(shí)間為24h時(shí)COD去除率達(dá)到最大值15.3%。Fenton氧化-水解酸化聯(lián)合預(yù)處理出水COD濃度為3820~4215 mg/L,COD去除率達(dá)到91.5%,Fenton氧化-水解酸化聯(lián)合預(yù)處理工藝有利于廢水的生化處理。后續(xù)生化實(shí)驗(yàn)表明,厭氧/好氧工藝出水COD濃度為955~1054 mg/L,原水COD去除率達(dá)到97%。
[Abstract]:Mercaptopropionic acid is an important fine chemical product, which produces a large amount of high concentration refractory organic wastewater, which is a major difficulty in wastewater treatment. In this study, the pretreatment process before biological treatment was studied in order to solve the problem of difficult treatment of sparsely propionic acid wastewater. At the same time, according to the characteristics of the actual wastewater containing Fe2, the combined application of Fenton oxidation technology and hydrolytic acidification technology in the pretreatment of sparse propionic acid wastewater was put forward. The main contents of the study include the optimal operation conditions and treatment effect of the Fenton oxidation technology and the kinetic experiment of the Fenton oxidation technology, and the optimum operation conditions and effects of hydrolytic acidification process on the oxidation of water out of Fenton. Finally, a preliminary biochemical experiment was carried out on the effluent treated by the combined process. In this study, COD was used as the main evaluation index of water quality. Fenton oxidation technology was used to pretreat mercapto propionic acid wastewater by single factor experiment. The optimal operation parameters of Fenton oxidation method were determined as follows: the dosage of H _ 2O _ 2 was 1 / 6QthH _ 2O _ 2 34.8 mL 路L ~ (-1), the pH value was 4, the reaction time was 120 min, and the removal rate of COD was 92.96%. The results of orthogonal experiment showed that the primary and secondary order of the influence of various factors on the effluent COD was the dosage of H _ (202) H _ 2O _ 2 as the reaction time. The optimum combination was pH 4.0, reaction time 90 min, H _ 2O _ 2 dosage 1 / 6 Q _ thH _ 2O _ 2 34.8 ml / L ~ (-1). The removal rate of COD by three times could reach the kinetics of COD degradation by 90%.Fenton oxidation method. The results showed that the oxidation of 90%.Fenton was basically in accordance with the second-order reaction kinetics. The kinetic model for degradation of mercapto propionic acid wastewater by Fenton oxidation was obtained by analyzing and calculating the experimental data. The effects of different pH values, volumetric loading and hydraulic retention time on the treatment of Fenton oxidized effluent by hydrolytic acidification process were studied. The results showed that the removal efficiency of COD was the best at pH = 7, the average removal rate was 9.3 and the highest was 13.5.The under the optimum pH condition, the reactor was subjected to five loading shocks, and the nutrient content increased with the increase of influent COD concentration. The removal rate of COD increased with the increase of microbial activity, and reached the maximum on the 8th day. Subsequently, the accumulation of toxicity of chemical wastewater led to the decrease of microbial activity and degradation ability, which made the removal rate of COD decrease again. Finally, the accumulation of microorganisms and toxic substances in the reactor reached equilibrium, and the COD removal rate of wastewater reached 15%. With the increase of reaction time, the removal rate of COD increased rapidly within 4 hours before the reaction, and then increased slowly. When the reaction time is 24 h, the COD removal rate reaches the maximum value. The COD removal rate of the effluent treated by 15.3%.Fenton oxidation combined with hydrolytic acidification is 3820 ~ 4215 mg / L ~ (-1). The combined pretreatment process of 91.5% Fenton oxidation and hydrolytic acidification is beneficial to the biochemical treatment of wastewater. The following biochemical experiments showed that the effluent COD concentration of anaerobic / aerobic process was 955 ~ 1054 mg / L, and the removal rate of COD in raw water was 97%.
【學(xué)位授予單位】:重慶三峽學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X78
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍桂林;;中國(guó)醫(yī)藥城水污染防治現(xiàn)狀及對(duì)策[J];污染防治技術(shù);2016年04期
2 高麗娟;商志娟;王進(jìn)崗;姜程程;申婷婷;王西奎;;煤渣-Fenton聯(lián)用工藝處理偶氮染料廢水的研究[J];廣州化工;2016年11期
3 何小霞;李向東;呼佳寧;馮啟言;;微電解—Fenton試劑氧化—A/O工藝處理制藥廢水[J];化工環(huán)保;2016年01期
4 尹敏敏;喬夢(mèng)君;李志鵬;盧鳳娟;;水解酸化-改良UASB-填料CASS工藝處理酒精廢水研究[J];環(huán)境科技;2015年03期
5 陳新才;潘輝環(huán);吳勇民;余華東;呂杰;李昱;;芬頓-混凝法去除印染廢水中的苯胺類(lèi)化合物[J];環(huán)境科學(xué)與技術(shù);2015年05期
6 蔡先明;秦俠;張麗;崔紅蕊;;催化濕式過(guò)氧化氫氧化處理垃圾滲濾液及其DOM光譜分析[J];環(huán)境科學(xué)學(xué)報(bào);2015年09期
7 明翠香;田凱勛;陸主;AKE Kouassi Marius Honore;;芬頓試劑預(yù)處理殺螟丹農(nóng)藥廢水[J];環(huán)境工程學(xué)報(bào);2014年12期
8 焦海;;微電解-芬頓-UASB-A/O組合工藝處理農(nóng)藥廢水工程實(shí)踐[J];資源節(jié)約與環(huán)保;2014年10期
9 梁吉艷;袁飛宇;于興春;鄒成龍;崔麗;王新;;水解酸化預(yù)處理顏料企業(yè)廢水實(shí)驗(yàn)研究[J];環(huán)境工程;2014年S1期
10 程云環(huán);滕井通;訾言勤;;Fenton試劑與厭氧微生物結(jié)合處理模擬印染廢水的研究[J];淮北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
,本文編號(hào):1786401
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1786401.html