淄博市大氣重污染過程污染來源及其與氣象條件的關(guān)聯(lián)性分析
本文選題:大氣重污染過程 + 污染來源 ; 參考:《山東師范大學(xué)》2017年碩士論文
【摘要】:近幾年淄博市的大氣污染問題較為嚴(yán)重,目前該地區(qū)大氣污染治理的主要困難是對各污染來源對當(dāng)?shù)卮髿馕廴镜木唧w貢獻(xiàn)占比研究較少,且局地和區(qū)域氣象條件對淄博市大氣重污染過程的影響方式、影響程度研究尚少。本文通過實(shí)地調(diào)查、數(shù)據(jù)統(tǒng)計、查閱資料等方法獲取淄博市2015年的空氣質(zhì)量、氣象條件以及大氣污染物排放數(shù)據(jù),選取典型大氣重污染過程,確定主要大氣污染物排放清單并將清單結(jié)果輸入RAMS-CMAQ模型,利用模型對典型重污染過程進(jìn)行數(shù)值模擬,解析重污染過程污染來源,再分析重污染過程與氣象條件的關(guān)聯(lián)性。本文研究成果如下:(1)淄博市大氣污染來源:(1)綜合各污染過程來看,除過程三(3月27日-4月6日)是風(fēng)沙天氣造成的PM10爆發(fā)增長外,其余污染過程均以化學(xué)轉(zhuǎn)化造成的PM2.5二次污染為主,硫酸鹽對PM2.5二次組分的貢獻(xiàn)占比最大,總體占比超過30%,硝酸鹽次之,占比約為18%,有機(jī)碳、銨鹽占比均約為15%。除風(fēng)沙天氣一次顆粒物對PM2.5貢獻(xiàn)超過18%外,一次顆粒物、黑碳的的貢獻(xiàn)在10%左右。當(dāng)硫酸鹽貢獻(xiàn)明顯較高且SO2濃度較大時,重污染主要來自于本地排放積累,而當(dāng)硝酸鹽貢獻(xiàn)與硫酸鹽相當(dāng)且NO2濃度較低時,重污染主要來自于區(qū)域輸送。(2)從冬季(1月)污染特征來看,除硝酸鹽外,本地排放對淄博市冬季大氣污染貢獻(xiàn)超過80%,周邊區(qū)域輸送約占20%;硝酸鹽區(qū)域輸送超過40%。在本地排放源中,工業(yè)源總體占比超過40%,是最主要的污染來源,民用源、電力源也有較明顯貢獻(xiàn),分別約占15%,揚(yáng)塵源、農(nóng)業(yè)源、移動源貢獻(xiàn)較小。(2)淄博市大氣污染與氣象條件關(guān)聯(lián)性:(1)風(fēng)速、混合層高度對空氣質(zhì)量的影響程度大于其他氣象條件,在局地或區(qū)域處于小風(fēng)(風(fēng)速小于2.0m/s)或靜風(fēng)天氣、平均混合層高度小于200m時,污染物大量積累并發(fā)生重污染,且小風(fēng)(或靜風(fēng))天氣、低混合層高度持續(xù)越久,重污染持續(xù)越久甚至加重。結(jié)合淄博市地理位置來看,當(dāng)局地或區(qū)域風(fēng)向?yàn)槲鞅被驏|北且風(fēng)速較大時,利于污染物的擴(kuò)散。(2)相對濕度對空氣質(zhì)量的影響較為明顯,在局地或區(qū)域持續(xù)高濕(相對濕度大于70%)狀態(tài)下,污染物較大量積累,但在濕度飽和形成降水時,污染減輕。(3)從局地氣溫、氣壓可觀察冷(暖)鋒過境情況,當(dāng)氣溫降低(升高)、氣壓升高(降低)時,表明有冷(暖)鋒過境,且氣溫、氣壓變化幅度越大(小),鋒面移動速度越快(慢);冷鋒過境后,污染減輕。溫度層結(jié)與空氣質(zhì)量有較明顯的關(guān)系,當(dāng)在150~250m高度處發(fā)生逆溫且逆溫層厚度超過100m、逆溫持續(xù)時間超過24h時,污染物較大量積累。從區(qū)域氣壓場來看,均壓場和區(qū)域等壓線稀疏是造成污染物積累和重污染發(fā)生的重要原因。(4)抬升指數(shù)能夠較好地表征大氣穩(wěn)定度,當(dāng)抬升指數(shù)變小時,大氣穩(wěn)定程度的減小有利于污染物的擴(kuò)散。
[Abstract]:In recent years, the problem of air pollution in Zibo City is more serious. At present, the main difficulty of air pollution control in this area is that the specific contribution of various pollution sources to local air pollution is less studied.The influence of local and regional meteorological conditions on the process of heavy air pollution in Zibo City is still few.In this paper, the data of air quality, meteorological condition and emission of atmospheric pollutants in Zibo City in 2015 are obtained by field investigation, data statistics, data retrieval and so on, and typical atmospheric heavy pollution processes are selected.The emission inventory of major atmospheric pollutants is determined and the results of the inventory are input into the RAMS-CMAQ model. The typical heavy pollution process is numerically simulated by the model. The source of the heavy pollution process is analyzed, and the correlation between the heavy pollution process and the meteorological conditions is analyzed.The research results of this paper are as follows: 1) the source of air pollution in Zibo city, the source of air pollution, is: in the light of each pollution process, except for process 3 (March 27-April 6), which is caused by wind and sand weather, the PM10 burst increases.The other pollution processes are mainly caused by chemical transformation of PM2.5 secondary pollution, the contribution of sulfate to the secondary components of PM2.5 is the largest, the total proportion is more than 30, nitrate is the second, the proportion is about 18, organic carbon, ammonium salt is about 15 percent.The contribution of single particulate matter to PM2.5 was more than 18%, and that of black carbon was about 10%.When sulfate contribution is obviously high and SO2 concentration is high, heavy pollution mainly comes from local emission accumulation, but when nitrate contribution is equivalent to sulfate and NO2 concentration is low,Heavy pollution mainly comes from regional transport. (2) according to the characteristics of pollution in winter (January), except for nitrate, the contribution of local emissions to air pollution in Zibo in winter is more than 80,20 percent in surrounding areas, and more than 40 percent in nitrate regions.Among the local emission sources, the overall industrial source accounts for more than 40 percent, which is the most important source of pollution. Civilian sources and power sources also contribute more obviously, accounting for about 15 percent, dust sources, and agricultural sources, respectively.The relation between air pollution and meteorological conditions in Zibo City is: 1) Wind speed, mixed layer height have greater influence on air quality than other meteorological conditions, and there is a small wind (wind speed less than 2.0 m / s) or still wind weather in local or regional area.When the average height of mixing layer is less than 200 m, the pollutant accumulates and heavy pollution occurs. The longer the height of low mixing layer is, the longer the heavy pollution lasts, and the more serious the pollution is, the more severe the pollution is.According to the geographical location of Zibo City, when the local or regional wind direction is northwest or northeast and the wind speed is large, the relative humidity has a more obvious effect on air quality.Under the condition of local or regional continuous high humidity (relative humidity > 70), the pollutant accumulates in large quantities, but when the humidity saturation forms precipitation, the pollution is reduced. 3) from the local temperature, the air pressure can observe the transit of the cold (warm) front.When the temperature decreases (rising, the pressure increases), it indicates that there is a cold (warm) front crossing, and the larger the change of temperature and pressure is (small), the faster the front moves (slowly; after the cold front passes, the pollution is reduced.The relationship between temperature stratification and air quality is obvious. When the temperature inversion occurs at a height of 150 ~ 250m and the thickness of the inversion layer is more than 100m, and the temperature inversion duration is more than 24 hours, the pollutant accumulates in a large amount.From the point of view of the regional pressure field, the uniform pressure field and the sparse isobaric line are the important causes of pollutant accumulation and heavy pollution. The uplift index can better characterize the atmospheric stability, and when the uplift index becomes smaller,The reduction of atmospheric stability is beneficial to the diffusion of pollutants.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X51;X16
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜曉惠;徐峻;劉厚鳳;劉俊;何友江;黨鴻雁;孟凡;;重污染天氣下電力行業(yè)排放對京津冀地區(qū)PM_(2.5)的貢獻(xiàn)[J];環(huán)境科學(xué)研究;2016年04期
2 雷艷梅;劉曉;桑博;;淄博市大氣顆粒物中POPs污染水平研究[J];中國環(huán)境管理干部學(xué)院學(xué)報;2016年02期
3 付桂琴;張杏敏;尤鳳春;田亞芹;李二杰;;氣象條件對石家莊PM_(2.5)濃度的影響分析[J];干旱氣象;2016年02期
4 張建忠;李坤玉;王冠嵐;薛建軍;;京津冀4次重度污染過程的氣象要素分析[J];氣象與環(huán)境科學(xué);2016年01期
5 許萬智;朱春濤;陳仲榆;陳輝;廖蜜;;華北地區(qū)一次重污染天氣的氣象變化過程分析[J];中國環(huán)境監(jiān)測;2015年06期
6 劉芳盈;王菲菲;張殿平;翟慎永;孫秀美;亓恒振;;淄博市城區(qū)采暖期PM_(2.5)污染水平的GIS分析[J];環(huán)境衛(wèi)生學(xué)雜志;2015年04期
7 鞏坤;;基于氣象條件的大氣混合層高度模型研究[J];重慶工商大學(xué)學(xué)報(自然科學(xué)版);2015年06期
8 劉麗麗;王莉莉;;天津冬季重霾污染過程及氣象和邊界層特征分析[J];氣候與環(huán)境研究;2015年02期
9 蔣伊蓉;朱蓉;朱克云;李澤椿;;京津冀地區(qū)重污染天氣過程的污染氣象條件數(shù)值模擬研究[J];環(huán)境科學(xué)學(xué)報;2015年09期
10 吳劍斌;王茜;王自發(fā);;上海市夏季顆粒物污染過程數(shù)值模擬研究[J];環(huán)境科學(xué)學(xué)報;2015年07期
相關(guān)博士學(xué)位論文 前1條
1 陳朝暉;區(qū)域大氣環(huán)境質(zhì)量問題的研究[D];北京工業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 杜曉惠;基于源示蹤技術(shù)評估電力布局優(yōu)化對區(qū)域空氣質(zhì)量的影響[D];山東師范大學(xué);2016年
2 姜超;北京及周邊地區(qū)霧霾天氣污染物區(qū)域輸送數(shù)值模擬研究[D];南京信息工程大學(xué);2015年
3 賈琳琳;北方寒冷地區(qū)大氣顆粒物污染特征及源解析研究[D];哈爾濱工業(yè)大學(xué);2014年
4 楊欣;城市大氣氣溶膠污染過程的微脈沖激光雷達(dá)觀測研究[D];山東師范大學(xué);2014年
5 王琛;非均勻下墊面大氣邊界層的觀測和數(shù)值模擬研究[D];中國科學(xué)技術(shù)大學(xué);2014年
6 施紅蓉;利用風(fēng)廓線雷達(dá)探測降水相態(tài)和邊界層高度的初步研究[D];南京信息工程大學(xué);2014年
7 王躍;北京PM_(2.5)時空變化特征及重污染時段氣象成因研究[D];南京信息工程大學(xué);2014年
8 田謐;京津冀地區(qū)霾污染過程大氣PM_(2.5)及前體物變化特征研究[D];北京化工大學(xué);2013年
9 丁超;基于高分辨率觀測數(shù)據(jù)對西安市PM_(2.5)及其碳?xì)馊苣z的污染特性研究[D];西安建筑科技大學(xué);2012年
10 楊健兒;上海市近地表大氣顆粒物污染特征及來源分析研究[D];華東師范大學(xué);2011年
,本文編號:1755760
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1755760.html