寧夏回族自治區(qū)城市綠色出行策略研究
本文選題:綠色出行 切入點:機動車污染 出處:《浙江大學》2017年碩士論文 論文類型:學位論文
【摘要】:近些年,機動車污染物排放增加與大氣環(huán)境質(zhì)量下降之間的矛盾日漸突出。綠色出行提倡使用污染小、能耗低的交通工具,一定程度上能夠緩解機動車與大氣環(huán)境的矛盾。因此,發(fā)展綠色交通,鼓勵綠色出行尤為重要。本文通過道路實際測試獲取寧夏回族自治區(qū)典型城市道路車流量、車輛構(gòu)成、車輛行駛特征等數(shù)據(jù),采用IVE模型計算機動車污染物排放因子并對其進行修正,建立寧夏回族自治區(qū)各城市及整個區(qū)域的機動車污染排放清單;運用ArcGIS軟件、Surfer軟件進一步對銀川市和吳忠市機動車污染空間分布特點進行分析;結(jié)合機動車污染現(xiàn)狀特點,選取三種不同綠色出行措施,按基準和低碳兩種發(fā)展情景預測2030年寧夏回族自治區(qū)城市內(nèi)機動化出行污染排放量,分析綠色出行措施對機動車污染減排效果,進而提出該區(qū)域城市綠色出行策略建議。研究結(jié)果表明,2014年寧夏回族自治區(qū)城市機動車CO2、CO、NOx、HC、PM、N2O、CH4排放量分別為2352.62萬噸、39.87萬噸、26.30萬噸、5.84萬噸、1.20萬噸、0.29萬噸、0.15萬噸,機動車污染主要來自重型貨車和乘用車。銀川市、吳忠市機動車污染空間分布顯示,污染主要集中在城市中心、西北和東部區(qū)域。預測結(jié)果顯示,基準情景下,2030年寧夏回族自治區(qū)城市機動車CO2、CO、NOx、HC、PM排放量分別為6572.91萬噸、105.14萬噸、60.79萬噸、14.10萬噸、2.75萬噸。低碳情景下,采取結(jié)構(gòu)調(diào)整措施,機動車各污染物排放量分別下降29.18%、26.55%、33.11%、31.06%和33.19%;在此基礎(chǔ)上,采取能源替代措施,CO2、CO、NOx、HC和PM排放量進一步下降3.18%、3.39%、2.10%、2.56%、2.13%;采取機動車準入條件提高措施,各污染物排放量繼續(xù)下降0.42%、0.60%、0.49%、0.54%和0.54%。三種綠色出行措施綜合作用,2030年寧夏回族自治區(qū)城市機動車CO2、CO、NOx、HC、PM排放量分別下降32.78%、30.54%、35.70%、34.17%、35.86%。其中,結(jié)構(gòu)調(diào)整措施對由車輛數(shù)增加產(chǎn)生的污染物量的削減力度最大,各污染物的削減量占結(jié)構(gòu)調(diào)整措施總削減量的65%以上;且對貨車污染削減效果最顯著,各污染物的削減比例均在55%以上;其次是乘用車,削減比例最大達到40.38%。因此,可從結(jié)構(gòu)調(diào)整、新能源替代、提高機動車準入條件三方面著手,削減寧夏回族自治區(qū)城市機動車污染排放,促進綠色出行發(fā)展。
[Abstract]:In recent years, the contradiction between the increase of vehicle pollutant emission and the decline of atmospheric environmental quality has become increasingly prominent. Green travel advocates the use of vehicles with low pollution and low energy consumption. To some extent, it can alleviate the contradiction between motor vehicle and atmosphere environment. Therefore, it is very important to develop green traffic and encourage green travel. Using IVE model to calculate vehicle pollutant emission factor and revise it to establish the vehicle emission inventory of the cities of Ningxia Hui Autonomous region and the whole region. The spatial distribution characteristics of motor vehicle pollution in Yinchuan and Wuzhong are further analyzed by using ArcGIS software, and three different green travel measures are selected according to the characteristics of motor vehicle pollution. In 2030, according to the two development scenarios of benchmark and low carbon, the emission of motorized travel in Ningxia Hui Autonomous region was predicted, and the effect of green travel measures on the emission reduction of motor vehicle pollution was analyzed. The research results show that in 2014, the emission of motor vehicle CO2CO2CO2COOXNOXHCON2ON2ON2O-CH4 was twenty-three million five hundred and twenty-six thousand and two hundred tons, 398,700 tons, 263,000 tons, 58,400 tons, 12,000 tons, 2,900 tons and 1,500 tons, respectively, in the cities of Ningxia Hui Autonomous region, and the results showed that the emission of CH4 was twenty-three million five hundred and twenty-six thousand and two hundred tons, 398,700 tons, 263,000 tons, 58,400 tons, 12,000 tons, 2,900 tons and 1,500 tons, respectively. Motor vehicle pollution mainly comes from heavy trucks and passenger cars. The spatial distribution of motor vehicle pollution in Yinchuan and Wuzhong shows that the pollution is mainly concentrated in the urban center, northwest and eastern regions. Under the benchmark scenario, in 2030, the emission of HCPM from motor vehicle CO2CO2COONXN in the cities of Ningxia Hui Autonomous region was sixty-five million seven hundred and twenty-nine thousand and one hundred tons, one million fifty-one thousand and four hundred tons, 607,900 tons, 141,000 tons and 27,500 tons respectively. Under the low carbon scenario, structural adjustment measures were adopted. The emissions of various pollutants from motor vehicles decreased 29.18% and 26.55%, respectively, and 33.11% and 33.19%, respectively. On this basis, the amount of CO _ 2CO _ 2, CO _ 2, no _ x _ C _ HC and PM was further reduced by 3.18% and 3.39% ~ 2.10% ~ 2.56%; and measures were taken to improve the access conditions of motor vehicles, The discharge of each pollutant continues to decrease by 0.42% 0.60% and 0.54% and 0.54%, respectively. In 2030, the HCPM emissions of motor vehicles CO2CO2, CO2, CO2, CO2, NOxN, and HCPM of motor vehicles in the cities of Ningxia Hui Autonomous region decreased by 32.78, 30.54, and 34.17 to 35.86, respectively. Of these, Structural adjustment measures have the greatest effect on reducing the amount of pollutants produced by the increase in the number of vehicles, and the reduction of each pollutant amount accounts for more than 65% of the total reduction amount of the structural adjustment measures, and the effect on the reduction of freight car pollution is the most obvious. The reduction rates of each pollutant are above 55%, followed by passenger cars, with a maximum reduction ratio of 40.38.Therefore, we can start from three aspects: structural adjustment, new energy substitution, and improvement of access conditions for motor vehicles. Reduce urban motor vehicle pollution emissions in Ningxia Hui Autonomous region, promote green travel development.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X734.2
【參考文獻】
相關(guān)期刊論文 前10條
1 柳晨;;美國新能源汽車產(chǎn)業(yè)發(fā)展戰(zhàn)略分析及啟示[J];寶雞文理學院學報(社會科學版);2016年05期
2 王媛媛;;德國城市公共交通一體化及啟示[J];交通企業(yè)管理;2016年09期
3 張長令;王成;;我國新能源汽車推廣進入第三階段[J];中國戰(zhàn)略新興產(chǎn)業(yè);2016年11期
4 歐陽明高;;中國新能源汽車的研發(fā)及展望[J];科技導報;2016年06期
5 ;上海專車處罰出臺新規(guī) “互聯(lián)網(wǎng)+”遭遇立法滯后[J];通信世界;2015年20期
6 郭源園;李莉;李貴才;張華;;國內(nèi)外城市土地利用與交通相互作用研究綜述[J];國際城市規(guī)劃;2015年03期
7 李曉菲;;我國新能源公交全球最多[J];商用汽車新聞;2015年04期
8 劉小明;何忠賀;;城市智能交通系統(tǒng)技術(shù)發(fā)展現(xiàn)狀及趨勢[J];自動化博覽;2015年01期
9 尚若靜;;南京市黃標車污染現(xiàn)狀與管理對策[J];環(huán)境監(jiān)控與預警;2014年04期
10 于相坤;;國外智能交通系統(tǒng)對我國的啟示[J];汽車與安全;2014年08期
相關(guān)博士學位論文 前1條
1 龍江英;城市交通體系碳排放測評模型及優(yōu)化方法[D];華中科技大學;2012年
相關(guān)碩士學位論文 前5條
1 王志遠;城市軌道站點與其它交通方式接駁研究[D];重慶交通大學;2013年
2 李新興;杭州市道路機動車污染物排放特征及減排策略研究[D];浙江大學;2013年
3 張鵬飛;輕型汽車行駛工況下車載測試單車排放特征的研究[D];西安建筑科技大學;2007年
4 任小平;基于MOBILE6.2模型的西安市機動車綜合排放因子研究[D];西安建筑科技大學;2006年
5 陳琛;城市公共交通換乘系統(tǒng)研究[D];東南大學;2004年
,本文編號:1605173
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1605173.html