生物電化學(xué)系統(tǒng)降解氟代硝基苯性能及機(jī)理研究
本文選題:氟代硝基苯 切入點(diǎn):生物電化學(xué)系統(tǒng) 出處:《浙江工商大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:氟代硝基苯類(lèi)化合物是一種新型難降解有毒有機(jī)污染物,具有"三致性'"和"脂溶性"。相比于同等結(jié)構(gòu)的氯代化合物,氟代化合物的化學(xué)穩(wěn)定性更高,生物毒性更強(qiáng)。如果這類(lèi)污染物直接排放到水體中將對(duì)人類(lèi)和環(huán)境造成嚴(yán)重危害。因此,開(kāi)發(fā)一種環(huán)保、高效、經(jīng)濟(jì)的有機(jī)氟廢水處理新工藝迫在眉睫。本論文構(gòu)建生物電化學(xué)系統(tǒng)(bioelectrochemical system,BES)來(lái)強(qiáng)化氟代硝基苯類(lèi)廢水的處理,同時(shí)比較BES對(duì)鄰氟硝基(o-FNB)、間氟硝基(m-FNB)和對(duì)氟硝基苯(p-FNB)三種不同氟取代位的單氟硝基苯降解性能的差異。此外,還探討了 BES中生物陰極對(duì)p-FNB的還原去除、生物陽(yáng)極對(duì)p-FNB氧化脫氟和電子傳遞機(jī)理。獲得主要結(jié)論如下:(1)以p-FNB為模擬污染物,在反應(yīng)器馴化到運(yùn)行穩(wěn)定階段,BES去除100%的p-FNB所需要的時(shí)間為18 d,相比于微生物系統(tǒng)(BS)(36 d)縮短了 50%。在運(yùn)行穩(wěn)定階段,BES去除p-FNB的一級(jí)動(dòng)力學(xué)常數(shù)達(dá)到0.078 h-1,是BS(0.048 h-1)中的1.625倍。GC-MS結(jié)果表明,p-FNB在BES中主要通過(guò)硝基的還原去除,而在BS中則主要通過(guò)微生物降解去除。此外,在BES中富集的主要功能微生物為 Anaerolineae(20.8%),Flavobacteriia(15.9%)和 Alphaproteobacteria(14.8%),在 BS 中則主要為 Flavobacteriia(32.8%),Clostridia(24.1%)和 Ignavibacteria(19.2%)。(2)BES對(duì)o-FNB、m-FNB和p-FNB的去除和脫氟性能表現(xiàn)出顯著差異。BES去除三種不同氟取代位的單氟硝基苯的難度分別為o-FNBm-FNBp-FNB。其中p-FNB在BES中的母體去除率、脫氟率以及TOC去除率分別為99.7%、50.1%和84.8%。遠(yuǎn)高于o-FNB(22.6%、3.6%和 5.4%)和 m-FNB(50.2%、5.2%和 10.7%)。量子化學(xué)結(jié)果表明,o-FNB中N原子的電荷密度最強(qiáng),m-FNB其次,p-FNB最弱。氟代硝基苯還原成相應(yīng)的氟代苯胺后,間氟苯胺(m-FA)脫氟需克服的勢(shì)壘最強(qiáng)(△Eb=47.69 kcal mol-1),對(duì)氟苯胺(o-FNB)(△Eb=15.68kcal mol-1)和對(duì)氟苯胺(p-FNB)(△Eb=18.19 kcal mol-1)則差異不顯著。生物群落結(jié)構(gòu)結(jié)果表明,以o-FNB富集的主要功能微生物為 Proteobacteria(58.0%),Firmicute(14.0%)和 Bacteroidetes(9.6%),以m-FNB富集的主要功能微生物為Proteobacteria(47.6%),Firmicutes(19.3%)和 Bacteroidetes(10.3%),而以p-FNB 富集的主要功能微生則為 Proteobacteria(26.49%),Bacteroidetes(24.5%)和Chloroflexi(13.0%)。(3)在厭氧單室BES中,p-FNB主要通過(guò)陰極表面將硝基還原成胺基進(jìn)而轉(zhuǎn)化為p-FA實(shí)現(xiàn)母體去除,然后在陽(yáng)極表面通過(guò)氧化降解p-FA實(shí)現(xiàn)脫氟反應(yīng),因此p-FNB在BES中的的降解礦化是生物陰極的還原和生物陽(yáng)極氧化的共同作用。微生物只能以氧氣作為電子受體才能降解p-FNB,但不能利用硝酸鹽或硫酸鹽為電子受體來(lái)降解p-FNB;在僅提供電子供體的條件下p-FNB可以實(shí)現(xiàn)還原轉(zhuǎn)化為p-FA,但無(wú)法實(shí)現(xiàn)脫氟。
[Abstract]:Fluoronitrobenzenes are a new type of refractory toxic organic pollutants, which are characterized by "tritoxicity" and "liposolubility". Compared with chlorinated compounds of the same structure, fluorinated compounds have higher chemical stability. If these pollutants are released directly into the water body, they will cause serious harm to human beings and the environment. Therefore, the development of a kind of environmental protection, high efficiency, In this paper, bioelectrochemical system BESs was constructed to enhance the treatment of fluorinated nitrobenzene wastewater. At the same time, the degradation performance of p-fluoronitrobenzene (p-fluoronitrobenzene) and p-fluoronitrobenzene (p-fluoronitrobenzene) (p-fluoronitrobenzene) by BES were compared. In addition, the reduction removal of p-FNB by the biological cathode in BES was also discussed. The mechanism of oxidation defluorination and electron transport of p-FNB by biological anode. The main conclusions are as follows: (1) p-FNB is used as a simulated pollutant. It takes 18 days to remove p-FNB of 100% from acclimation to stable operation of the reactor, which is 50 days shorter than that of microbial system. The first-order kinetic constant of removal of p-FNB is 0.078 h ~ (-1), which is BS(0.048 h-1). The results of GC-MS showed that p-FNB was mainly removed by reduction of nitro in BES. While in BS, it is mainly removed by microbial degradation. In addition, The main functional microbes enriched in BES are Anaerolineae 20.8i and Flavobacteriae 15.9) and Alphaproteobacteria 14.8, mainly Flavobacteria 32.8T in BS) and Ignavibacteria(19.2%).(2)BES in removing and defluorination of o-FNBm-FNB and p-FNB. It is difficult for BES to remove three kinds of monofluoronitrobenzene with different fluorine substituents. The degree of p-FNB is o-FNBm-FNBp-FNB.The parent removal rate of p-FNB in BES, The defluorination efficiency and the TOC removal efficiency were 99.70.1% and 84.8%, respectively, which were much higher than those of o-FNB22.6% and 5.4%) and m-FNBU 50.2% and 10.7%, respectively. The quantum chemical results showed that the charge density of N atom was the strongest in o-FNB, followed by p-FNB, and the corresponding fluoroaniline was reduced from fluorobenzene to corresponding fluoroaniline. There was no significant difference between m-FA-fluoroaniline and p-fluoroaniline p-FNB-1 (Eb=15.68kcal mol-1) and Eb=18.19 kcal mol-1 (p-fluoroaniline p-FNB-1). The main functional microorganisms enriched by o-FNB are Proteobacteriae 58.0 and Bacteroidetesi 9.6m, and the main functional microbes enriched by m-FNB are Proteobacteriae 47.6i) and Bacteroidetes10.3m) and the main functional microbes enriched by p-FNB are Proteobacteria 26.49s 24.5m) and Chloroflexithroides 13.0b in anaerobic single-chamber BES, mainly through the cathode surface. The main functional microbes enriched by p-FNB are Proteobacteria 26.49 Bacterodes 24.510) and Chloroflexius 13.0%. 3) in the anaerobic single chamber BES, the main functional microorganism enriched by p-FNB is Proteobacteria 26.49 Bacterodes 24.510) and Chloroflexie 13.0%. 3) in anaerobic single-chamber BES, the main functional microorganism enriched by p-FNB is Proteobacteria26.49TES 24.510) and Chloroflexius 13.0%. The nitro group was reduced to amine group and then converted to p-FA to remove the matrix. Then the defluorination reaction was realized by oxidation degradation of p-FA on the anode surface. Therefore, the degradation and mineralization of p-FNB in BES is the co-action of biological cathodic reduction and biological anodic oxidation. Microorganisms can only use oxygen as an electron receptor to degrade p-FNB, but can't use nitrate or sulfate as electron acceptor to degrade p-FNB. P-FNB was degraded and p-FNB was reduced to p-FAunder under the condition of only providing electron donor, but defluorination could not be realized.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 安立超,朱兆華,汪信,陸路德,嚴(yán)學(xué)億;硝基苯生產(chǎn)廢水高效處理工藝研究[J];南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
2 蔡邦成,高士祥,肖琳,邵云,孔德洋,王連生;一株硝基苯高效降解菌的篩選及其降解特性[J];環(huán)境科學(xué)與技術(shù);2003年04期
3 唐萍,周集體,王競(jìng),劉春;硝基苯廢水治理的研究進(jìn)展[J];工業(yè)水處理;2003年03期
4 陳萍,邱瑾;國(guó)內(nèi)硝基苯廢水治理研究進(jìn)展[J];貴州化工;2004年02期
5 王麗敏,劉振鴻,王建剛,郭景海;硝基苯廢水治理技術(shù)研究進(jìn)展[J];江蘇環(huán)境科技;2005年02期
6 孫劍輝,孫勝鵬,張波;厭氧折流板反應(yīng)器處理硝基苯廢水的研究[J];工業(yè)水處理;2005年07期
7 李玉平 ,曹宏斌 ,張懿 ,陳艷麗;硝基苯在溫和條件下的電化學(xué)還原[J];環(huán)境科學(xué);2005年01期
8 樊金紅,徐文英,高廷耀,周榮豐;硝基苯類(lèi)廢水的預(yù)處理技術(shù)研究[J];環(huán)境污染與防治;2005年01期
9 張波;孫劍輝;王t,
本文編號(hào):1581504
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1581504.html