人員活動和空氣凈化器對氣管鏡室空氣微生物和顆粒物的影響
本文關(guān)鍵詞:人員活動和空氣凈化器對氣管鏡室空氣微生物和顆粒物的影響 出處:《南方醫(yī)科大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 氣管鏡室 空氣凈化器 細菌 真菌 總微生物 PM_(2.5) PM_(2.5-10.0)
【摘要】:目的評價人員活動和空氣凈化器對氣管鏡室空氣微生物和顆粒物的影響。方法選擇面積為28m2的氣管鏡室為實驗場所,分兩部分進行實驗,第一部分為分別在無人員活動(靜態(tài)組)、少量人員活動(動態(tài)組1)、更多人員活動(動態(tài)組2)的五個不同時間點(Oh、0.5h、1h、2h、4h),在室內(nèi)對角線三點對空氣進行采樣和分析,用浮游菌法采集空氣中的微生物并培養(yǎng)、計數(shù)及分類、鑒定,用DT-9881M激光塵埃粒子計數(shù)器檢測顆粒物濃度及大小分布,分析不同人員活動狀態(tài)下的氣管鏡室空氣微生物和顆粒物水平,評價人員活動單一因素的影響;第二部分按照氣管鏡室有無人員活動和空氣凈化器BA-6065凈化,將實驗分成六組:靜態(tài)無凈化組(無人員活動、無凈化器)、靜態(tài)凈化組(無人員活動、有凈化器)、動態(tài)無凈化組1(少量人員活動、無凈化器)、動態(tài)凈化組1(少量人員活動、有凈化器)、動態(tài)無凈化組2(更多人員活動、無凈化器)、動態(tài)凈化組2(更多人員活動、有凈化器),按第一部分方法檢測氣管鏡室空氣微生物和顆粒物,運用混合線性模型分析人員活動和空氣凈化器兩個因素對氣管鏡室空氣微生物和顆粒物的影響。結(jié)果1.靜態(tài)組的總微生物濃度(細菌+真菌)為(149.33±4.98)CFU/m3,細菌、真菌濃度分別為(84.33±3.65)CFU/m3、(65.00±2.66)CFU/m3,動態(tài)組1的總微生物濃度為(203.20±10.92)CFU/m3,細菌、真菌濃度分別為(113.53±7.78)CFU/m3、(89.67±7.17)CFU/m3,動態(tài)組 2 的總微生物濃度為(299.85±13.92)CFU/m3,細菌、真菌濃度分別為(186.29±13.04)CFU/m3、(113.56±6.45)CFU/m3。動態(tài)組1的總微生物濃度、細菌、真菌濃度均明顯高于靜態(tài)組,差異有統(tǒng)計學(xué)意義(p0.05),動態(tài)組2的上述三個濃度亦均明顯高于相應(yīng)的靜態(tài)組和動態(tài)組1,差異均有統(tǒng)計學(xué)意義(p0.05)。2.靜態(tài)組的 PM2.5、PM2.5-10.0濃度分別為(45812.64±1279.61)個/m3、(189.15± 4.64)個/m3,動態(tài)組 1 的 PM2.5、PM2.5-10.0 濃度分別為(86557.20±4158.29)個/m3、(659.69±38.91)個/m3,動態(tài)組2的PM2.5、PM2.5-10.0濃度分別為(53907.39±1226.79)個/m3、(403.04±10.98)個/m3。PM2.5、PM2.5-10.。濃度在動態(tài)組 1 和動態(tài)組2均顯著高于靜態(tài)組(p均0.05),但在動態(tài)組2顯著低于動態(tài)組1(p0.05)。3.靜態(tài)組氣管鏡室空氣中的細菌約占總微生物的55.3%,其中革蘭陽性球菌最多見(約70%),革蘭陰性桿菌次之(約15%),真菌約占總微生物的44.7%,以青霉和曲霉最多見。4.不同組氣管鏡室空氣中顆粒物的粒徑構(gòu)成情況均為PM0.3—0.PM0.5-1.0PM1.0-2.5PM2.5-5.0PM5.0-10.0PM≥10.0,粒徑越小,數(shù)量越多,PM主要由 PM0.3-0.5、PMo.5-1.0和PM 1.0-2.5 構(gòu)成,即PM2.5,占總顆粒物的999%以上。5.無論氣管鏡室有無人員活動及數(shù)量多少,凈化器BA-6065對空氣中的細菌、PM2.5、PM2.5—10.0濃度均有顯著的清除效果(p0.05),總微生物和真菌濃度在凈化器組和無凈化器組之間無顯著性差異(p0.05),說明此凈化器對總微生物和真菌的清除作用不明顯。結(jié)論人員活動增加氣管鏡室空氣中包括細菌、真菌在內(nèi)的微生物氣溶膠濃度和可吸入顆粒物濃度;空氣凈化器BA-6065能降低有或無人員活動時空氣中的細菌和可吸入顆粒物濃度,有防控經(jīng)氣溶膠傳播的院內(nèi)呼吸道感染的應(yīng)用前景。
[Abstract]:Objective to evaluate the effect of personnel activities and air purifier for bronchoscopy room air microbial and particulate matter. Methods the area of bronchoscope room 28m2 as experimental sites, divided into two parts the first part is the experiment, respectively in the absence of personnel activities (static group), a small amount of personnel activities (dynamic group 1), more staff activities (dynamic group 2) of the five different time points (Oh, 0.5h, 1H, 2h, 4h), in the interior three diagonal points on air sampling and analysis, collection of microorganisms in the air and cultured by planktonic bacteria method, counting and classification, identification, using DT-9881M laser particle counter detection of particle concentration and size the distribution, analysis of different staff activities under bronchoscope room air microbial and particulate matter levels, impact assessment activities of single factor; the second part according to the bronchoscope room without staff activities and air purifier BA-6065 purification, the Into six groups: static purification group (no activities, no cleaner), static purification group (no human activity, there is no dynamic purifier), group 1 (no small amount of purification purifier personnel activities), dynamic purification group of 1 (a small amount of staff activities, there is no net of dynamic purifier), group 2 (purifier no more personnel activities), dynamic purification group of 2 (more personnel, according to the first part, a purifier) method for the detection of bronchoscope room air microbial and particulate matter, using mixed linear model to analyze the effects of personnel activities and the air purifier two factors on the gas pipe mirror room air microorganism and particles. Results the total microbial concentration 1. static groups (bacterial and fungal) for (149.33 + 4.98) CFU/m3, bacteria, fungal concentrations were (84.33 + 3.65) CFU/m3, (65 + 2.66) CFU/m3, the total microbial concentration dynamic group 1 is (203.20 + 10.92) CFU/m3, bacteria, fungal concentrations were (113.53 + 7.78) CFU/ M3, (89.67 + 7.17) CFU/m3, the total microbial concentration dynamic group 2 is (299.85 + 13.92) CFU/m3, bacteria, fungal concentrations were (186.29 + 13.04) CFU/m3, (113.56 + 6.45) total microbial concentration, dynamic group of 1 CFU/m3. bacteria, fungi concentration were significantly higher than that in static group, was statistically significant the difference (P0.05), three of the concentration of dynamic group 2 were significantly higher than the corresponding static and dynamic group 1, the differences were statistically significant (P0.05).2. static group PM2.5, PM2.5-10.0 concentrations were (45812.64 + 1279.61) /m3, (189.15 + 4.64) /m3, dynamic group of 1 PM2.5 the concentration of PM2.5-10.0, respectively (86557.20 + 4158.29) /m3, (659.69 + 38.91) /m3, dynamic group 2 PM2.5, PM2.5-10.0 concentration was (53907.39 + 1226.79) /m3, (403.04 + 10.98) /m3.PM2.5, the concentration of PM2.5-10.. In the dynamic group 1 and group 2 were significantly higher than that of the static dynamic group (P 0.05), but in Dynamic group 2 was significantly lower than that of group 1 (P0.05).3. dynamic static group air bronchoscope room in bacteria accounted for about 55.3% of the bacteria, gram positive coccus (70%), gram negative bacilli (15%), fungi accounted for about 44.7% of the microorganisms, to Penicillium and Aspergillus most see particulate air.4. different groups of bronchoscope room in particle size composition were PM0.3 - 0.PM0.5-1.0PM1.0-2.5PM2.5-5.0PM5.0-10.0PM = 10, the smaller the particle size, the more the number of PM, mainly by PM0.3-0.5, PMo.5-1.0 and PM 1.0-2.5, namely PM2.5, the number of total particles more than 999%.5. regardless of bronchoscope room there is no personnel and activities the number of bacteria in the air purifier BA-6065, PM2.5, PM2.5 10 concentration had significant scavenging effect (P0.05), no significant difference in total bacteria and fungi concentration between the purifier group and non purifier group (P0.05), indicating that this purifier on Scavenging effect of total bacteria and fungi was not obvious. Conclusion activities increase air bronchoscope room including bacteria, fungi, microbial aerosol concentration and the concentration of respirable particulate matter; air purifier can reduce BA-6065 with or without personnel activities in the air of bacteria and the concentration of respirable particulate matter, application of respiratory tract infection prevention and control of gas sol spread in the hospital.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R12
【參考文獻】
相關(guān)期刊論文 前10條
1 楊環(huán);王蓓;姚新寶;周媛;陸晨;;2014年新疆132所醫(yī)院醫(yī)院感染橫斷面流行病學(xué)調(diào)查[J];中國感染控制雜志;2015年10期
2 高芳;張杰;吳艷艷;鄒俊寧;朱明;熊莉娟;;4249例住院患者醫(yī)院感染現(xiàn)患率調(diào)查[J];中國消毒學(xué)雜志;2015年03期
3 Xuemei Wang;Jianmin Chen;Tiantao Cheng;Renyi Zhang;Xinming Wang;;Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai[J];Journal of Environmental Sciences;2014年09期
4 方治國;孫平;歐陽志云;劉們;孫力;王小勇;;北京市居家空氣微生物粒徑及分布特征研究[J];環(huán)境科學(xué);2013年07期
5 時彥玲;鄧林紅;;細顆粒物(PM_(2.5))對氣道的病理作用及其與哮喘病理機制的關(guān)系[J];醫(yī)用生物力學(xué);2013年02期
6 劉江紅;;多功能動態(tài)殺菌機對支氣管鏡室空氣消毒效果分析[J];實用臨床醫(yī)學(xué);2011年03期
7 劉勇;蘆茜;譚永強;袁洪;黃志軍;;空氣凈化機對重癥監(jiān)護病房空氣中可吸入顆粒物動態(tài)凈化效果的觀察[J];中華醫(yī)院感染學(xué)雜志;2010年02期
8 李曉黎;;室內(nèi)空氣污染物的來源、危害與控制[J];內(nèi)蒙古環(huán)境科學(xué);2009年01期
9 李霞;丁培;王友斌;鄭萍;;不同種類空氣凈化器凈化室內(nèi)細菌的效果評價[J];中國衛(wèi)生檢驗雜志;2008年01期
10 錢華;戴海夏;;室內(nèi)空氣污染與人體健康的關(guān)系[J];環(huán)境與職業(yè)醫(yī)學(xué);2007年04期
,本文編號:1404704
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1404704.html