富含重金屬生物炭的環(huán)境風(fēng)險(xiǎn)及潛在應(yīng)用探討
本文關(guān)鍵詞:富含重金屬生物炭的環(huán)境風(fēng)險(xiǎn)及潛在應(yīng)用探討 出處:《西北農(nóng)林科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 生物炭 重金屬 風(fēng)險(xiǎn)特性 潛在應(yīng)用
【摘要】:為了研究含有重金屬元素生物炭的環(huán)境風(fēng)險(xiǎn)特性及潛在應(yīng)用,本研究選取了含重金屬Cu、Zn、Pb和Cd的生物吸附劑廢渣、含Zn、Mn元素的干電池廢棄物和含Zn藥渣作為原材料,以高溫?zé)峤夥ㄖ苽淞瞬煌N類的生物炭,運(yùn)用SEM-EDX、N2吸附-解吸、XPS、FT-IR以及TEM-SEAD衍射等技術(shù)手段,表征分析了不同制備溫度對(duì)生物炭理化性質(zhì)和表面空隙結(jié)構(gòu)的影響;并以三酸消解、BCR提取和溶出試驗(yàn)等方法,分析了不同制備溫度對(duì)生物炭中重金屬化學(xué)行為的影響,并通過(guò)風(fēng)險(xiǎn)評(píng)估指數(shù)(Risk assessment code,RAC)、米勒地質(zhì)累積指數(shù)(Muller geo-accumulation index,Igeo)以及潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Potential ecological risk index,RI)等客觀地評(píng)價(jià)了含重金屬生物炭的潛在環(huán)境風(fēng)險(xiǎn);最后,結(jié)合不同生物炭的自身特點(diǎn),對(duì)其潛在資源化利用做了初步研究。主要研究結(jié)果與結(jié)論如下:(1)含重金屬的吸附劑廢渣經(jīng)高溫(350、550、750℃)炭化后,含Cu、Zn、Pb和Cd生物炭pH由8.49、7.86、7.94和7.96(350℃)顯著提高至10.19、10.08、10.98和10.71(750℃),但EC先降后升且變化幅度較小。提高裂解溫度,生物炭產(chǎn)率從40%-55%(350℃)顯著降低至27%-28%(750℃),灰分產(chǎn)率從28%-30%(350℃)增大至48%-54%(750℃);且C/N比增大,H/C和O/C比降低,表明生物炭芳香性增強(qiáng)。裂解炭化后生物炭孔隙更加發(fā)達(dá),含Cu、Zn、Pb和Cd生物炭比表面積分別顯著提高至208.41、183.38、230.20和241.33 m2 g-1(750℃),平均孔徑從10-40 nm(350℃)減小至6-7 nm(750℃),均為介孔孔徑(2-20 nm)。FT-IR分析表明,裂解溫度升高使官能類型和總量減少,但金屬氧化物化合鍵明顯增多。XPS和TEM-SEAD衍射分析顯示,裂解過(guò)程使Cu(II)氧化態(tài)部分向Cu(I)和Cu(0)晶體轉(zhuǎn)變,而Zn(II)、Pb(II)、Cd(II)氧化態(tài)并不存在顯著變化。提高裂解溫度,生物炭?jī)?nèi)重金屬總量進(jìn)一步濃縮,且重金屬酸溶態(tài)與可還原態(tài)向可氧化態(tài)與殘?jiān)鼞B(tài)轉(zhuǎn)化;RAC、RI指數(shù)均明顯減小,重金屬穩(wěn)定性加強(qiáng),環(huán)境風(fēng)險(xiǎn)和潛在生態(tài)危害降低;雖然Igeo逐步增大,重金屬地質(zhì)積累性危害增大,但種子發(fā)芽指數(shù)與平均根長(zhǎng)逐漸增大,對(duì)植物毒性顯著降低。對(duì)含重金屬的生物炭開(kāi)展的潛在資源化利用研究表明,含Cu生物炭可降低藍(lán)藻體系的pH并使pH穩(wěn)定在8~9之間,同時(shí)提高EC并穩(wěn)定在2000-2100μs·cm-1,含Cu炭能夠抑制藻類繁殖過(guò)程中葉綠素a含量的增加,從而抑制水藻正常的繁殖生長(zhǎng)。(2)將不同比例(10%、20%和30%)的電池黑碳粉(負(fù)極材料)與鋸末混合后,550℃熱解處理,使pH由7.44、7.23及7.05(原料)顯著提高至10.80、10.94及10.85(復(fù)合炭),EC值由1.91、2.53和3.85(mS·cm-1)(原料)顯著降低至1.67、2.08和2.30(mS·cm-1)(復(fù)合炭),灰分產(chǎn)率由54.76、64.10、70.28%(原料)降低至21.34、29.89、37.26%(復(fù)合炭)。熱解處理后物質(zhì)的C和N含量均降低,但電池黑碳粉添加比例對(duì)復(fù)合炭的C/N比影響較小;隨著電池黑碳添加比例的增加,復(fù)合炭的比表面積從61.23 m2 g-1(10%-C)降低到37.27 m2 g-1(30%-C),而平均孔徑從7.13 nm增大到12.65 nm。復(fù)合炭中重金屬M(fèi)n、Zn含量較高,且與添加比例呈顯著性正相關(guān)關(guān)系。復(fù)合炭的溶出試驗(yàn)表明,強(qiáng)酸環(huán)境下,Mn、Zn元素有較大的溶出風(fēng)險(xiǎn)。復(fù)合炭的生態(tài)毒性試驗(yàn)表明,復(fù)合炭的種子發(fā)芽指數(shù)與平均根長(zhǎng)明顯小于空白,說(shuō)明了復(fù)合炭具有一定的生態(tài)毒性。鋸末-電池復(fù)合炭中BBC550-30%具有較良好的吸附性能。在pH 5.0,400 mg·L-1Pb(II)溶液,50℃等外界條件下吸附量最高,達(dá)到124.64 mg·g-1。Pb(II)的吸附機(jī)制主要為表面吸附、孔內(nèi)擴(kuò)散靜電吸引和表面沉淀吸附過(guò)程。(3)550℃裂解藥渣后,獲得的藥渣炭pH顯著升高至9.85,EC降低至1.82(mS·cm-1),灰分產(chǎn)率下降了6.5%,碳含量減少了28.8%,氮含量減少了44.0%,C/N比降低了21.2%。藥渣炭中Zn明顯濃縮,RAC、RI值顯著減少,生物有效性、環(huán)境風(fēng)險(xiǎn)和潛在生態(tài)風(fēng)險(xiǎn)顯著減小。含Zn藥渣炭對(duì)植物生長(zhǎng)具有一定的毒害性,但隨著生物炭裂解溫度提高,重金屬毒害性明顯降低。但小青菜盆栽試驗(yàn)表明,由于濃縮大量重金屬Zn元素,含Zn生物炭進(jìn)入土壤環(huán)境后會(huì)導(dǎo)致小青菜體內(nèi)Zn積累顯著,因而其應(yīng)用的毒害性需要進(jìn)一步的研究探討。
[Abstract]:In order to study the environmental risk characteristics of heavy metal elements containing biochar and potential applications, this study selected the containing heavy metals of Cu, Cd and Pb Zn, biosorbent waste residue, containing Zn, Mn elements and Zn containing waste dry battery dregs as raw materials, which were prepared by pyrolysis of biochar, different the use of SEM-EDX, N2 adsorption desorption, XPS, FT-IR and TEM-SEAD diffraction techniques, characterization of different preparation temperature effects on physicochemical properties and surface pore structure of biochar; and by acid digestion, and dissolution test method of BCR extraction, analysis of different preparation temperature influence on the chemical behavior of heavy metals biochar, and through the risk assessment index (Risk assessment, code, RAC), Miller (Muller geo-accumulation index geoaccumulation index, Igeo) and the potential ecological risk index (Potential ecological risk index, RI) objective assessment The price of the heavy metal containing biochar potential environmental risk; finally, the combination of different biochar characteristics, the potential resource utilization were studied. The main results and conclusions are as follows: (1) adsorbent waste containing heavy metals by high temperature (350550750 DEG C) after carbonization, containing Cu, Zn, and Pb Cd 8.49,7.86,7.94 and 7.96 pH by biochar (350 C) increased to 10.19,10.08,10.98 and 10.71 (750 C), but EC decreased and then increased and the amplitude of variation is small. Increasing the pyrolysis temperature, biochar yield from 40%-55% (350 DEG C) was reduced to 27%-28% (750 DEG C), ash yield from 28%-30% (350 C) increased to 48%-54% (750 DEG C); and the C/N ratio increased, H/C and O/C are lower than that of biological carbon aromaticity increased. After carbonization pyrolysis biochar pore is more developed, including Cu, Zn, Pb and Cd bio carbon surface area were significantly increased to 208.41183.38230.20 and 241.33 M2 g-1 (750 C), average pore Size from 10-40 nm (350 DEG C) reduced to 6-7 nm (750 C), both pore size (2-20 nm).FT-IR analysis showed that pyrolysis temperature increased functional types and reduce the amount of metal oxide, but chemical bonds increased significantly.XPS and TEM-SEAD diffraction analysis showed that the pyrolysis process of the Cu (II) oxidized part to Cu (I) and Cu (0) crystal transformation, and Zn (II), Pb (II), Cd (II) oxidation state does not exist significant changes. To improve the cracking temperature of biochar in the total amount of heavy metals and heavy metals enriched, acid soluble and reducible to the oxidation state and residue can be transformed state; RAC, RI index were significantly decreased, the stability of heavy metals to strengthen environmental risk and potential ecological risk is reduced; while Igeo increased gradually, the heavy metal accumulation of geological hazard increases, but the seed germination index and average root length increased, toxicity to plants decreased significantly. The potential resources of biological carbon containing heavy metals is carried out The study shows that Cu containing biochar can reduce cyanobacteria system pH and make pH stable between 8~9 and EC and improve the stability in the 2000-2100 s cm-1, Cu containing carbon can increase the chlorophyll content of a inhibiting algae breeding process, thereby inhibiting the normal growth and reproduction of algae. (2) the different proportion (10%, 20% and 30%) of the battery (black carbon anode materials) and sawdust mixture, 550 C pyrolysis process, the pH by 7.44,7.23 and 7.05 (raw material) significantly increased to 10.80,10.94 and 10.85, EC (composite carbon) from 1.91,2.53 (mS - cm-1) and 3.85 (raw material) significantly reduced to 1.67,2.08 and 2.30 (mS - cm-1) (composite carbon) and ash yield by 54.76,64.10,70.28% (raw material) is reduced to 21.34,29.89,37.26% (composite carbon). Pyrolysis material C and N were lower, but the battery of black powder addition on the composite carbon C/N was smaller than the influence; with the increase of the proportion of added carbon black battery, composite Carbonspecific from 61.23 M2 g-1 (10%-C) reduced to 37.27 M2 g-1 (30%-C), and the average pore size increases from 7.13 nm to 12.65 nm. heavy metal composite carbon Mn, higher Zn content, and was significantly positively correlated with the proportion of added. Composite carbon dissolution test showed that the strong acid environment Mn, Zn, dissolved elements have greater risk. The test results showed that the ecological toxicity of composite carbon carbon composite, the seed germination index and the average root length was significantly less than the blank, the composite carbon has a certain eco toxicity. Sawdust - battery carbon composite BBC550-30% has good adsorption properties in pH 5.0400 mg. L-1Pb (II) solution, 50 degrees outside under the condition of adsorption was the highest, reached 124.64 Mg - g-1.Pb (II) adsorption mechanism is mainly surface adsorption, pore diffusion electrostatic attraction and surface precipitation adsorption process. (3) 550 C cracking residue, the residue carbon pH significantly increased to 9.85. EC Reduced to 1.82 (mS - cm-1), ash yield decreased by 6.5%, the carbon content decreased by 28.8%, nitrogen content decreased by 44%, C/N decreased the 21.2%. residue carbon Zn was concentrated, RAC, RI were significantly reduced, bioavailability, reduce environmental risk and potential ecological risk. The residue containing Zn carbon has toxicity to plant growth, but with biochar pyrolysis temperature increased, the toxicity of heavy metals decreased. But the cabbage pot experiment showed that the concentration of heavy metal elements as Zn, Zn containing biochar into soil environment will lead to small cabbage Zn accumulation significantly, so the application of toxic need further discussion the study.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ424;X13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉亞男;郭朝暉;孫陽(yáng);侍維;韓自玉;肖細(xì)元;曾鵬;;蘆竹修復(fù)收獲物熱解過(guò)程中重金屬的穩(wěn)定性(英文)[J];Transactions of Nonferrous Metals Society of China;2017年03期
2 潘全良;陳坤;宋濤;徐曉楠;戰(zhàn)秀梅;彭靖;蘇慧清;王月;韓曉日;;生物炭及炭基肥對(duì)棕壤持水能力的影響[J];水土保持研究;2017年01期
3 鄭凱琪;王俊超;劉姝彤;薛紅波;吳繼陽(yáng);劉天宇;尹微琴;王小治;;不同熱解溫度污泥生物炭對(duì)Pb~(2+)、Cd~(2+)的吸附特性[J];環(huán)境工程學(xué)報(bào);2016年12期
4 王格格;李剛;陸江銀;王建俊;;熱解工藝對(duì)污泥制備生物炭物理結(jié)構(gòu)的影響[J];環(huán)境工程學(xué)報(bào);2016年12期
5 蘇發(fā)文;高鵬程;來(lái)琦芳;么宗利;陸建學(xué);周凱;仲啟鋮;鄭亮;王慧;;銅綠微囊藻和小球藻對(duì)水環(huán)境pH的影響[J];中國(guó)水產(chǎn)科學(xué);2016年06期
6 高敬堯;王宏燕;許毛毛;代琳;馮露;袁佳慧;徐紅濤;孫巖;吳艷偉;;生物炭施入對(duì)農(nóng)田土壤及作物生長(zhǎng)影響的研究進(jìn)展[J];江蘇農(nóng)業(yè)科學(xué);2016年10期
7 徐剛;張友;武玉;邵宏波;秦松;;生物炭對(duì)土壤中氮磷有效性影響的研究進(jìn)展[J];中國(guó)科學(xué):生命科學(xué);2016年09期
8 黃輝;寧西翠;郭瞻宇;郭堤;張?jiān)鰪?qiáng);李榮華;王力;Ali Amjad;;多孔SBA-15顆粒對(duì)Cd(Ⅱ)的吸附縫合及其對(duì)土壤Cd(Ⅱ)的修復(fù)潛力[J];環(huán)境科學(xué);2017年01期
9 蔡函臻;寧西翠;王權(quán);張?jiān)鰪?qiáng);任秀娜;李榮華;王美凈;Mukesh Kumar Awasthi;;堿性固體對(duì)污泥的調(diào)質(zhì)堆肥影響及產(chǎn)品對(duì)土壤的改良潛力[J];環(huán)境科學(xué);2016年12期
10 周之棟;卜曉莉;吳永波;薛建輝;;生物炭對(duì)土壤微生物特性影響的研究進(jìn)展[J];南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年06期
相關(guān)博士學(xué)位論文 前1條
1 孟俊;豬糞堆制、熱解過(guò)程中重金屬形態(tài)變化及其產(chǎn)物的應(yīng)用[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 桂成民;微波熱解制備污泥生物炭研究[D];廣東工業(yè)大學(xué);2015年
2 何興華;納米金屬氧化物基雜化材料的制備及其對(duì)重金屬離子的去除研究[D];蘭州大學(xué);2015年
3 李曉明;土壤活性礦物穩(wěn)定可溶性生物質(zhì)炭的機(jī)制研究[D];南京農(nóng)業(yè)大學(xué);2014年
4 安增莉;生物炭的制備及其對(duì)Pb(Ⅱ)的吸附特性研究[D];華僑大學(xué);2011年
,本文編號(hào):1398875
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1398875.html