南京仙林地區(qū)大氣邊界層結構及其對空氣污染的影響
本文關鍵詞:南京仙林地區(qū)大氣邊界層結構及其對空氣污染的影響 出處:《南京大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 邊界層結構 混合層 逆溫層 天氣類型 空氣污染
【摘要】:大氣邊界層是指對流層下部,直接受地面影響的大氣層。湍流運動是邊界層的主要特征,大氣邊界層內復雜的氣象條件變化影響了整個大氣的演變過程,對污染物的擴散和清除,對全球氣候的穩(wěn)定與變遷都有著極為重要的影響。探索南京仙林地區(qū)大氣邊界層結構及其對空氣污染的影響,有助于深入認識該地區(qū)空氣污染特征及演變規(guī)律,對于有效制定污染防治對策具有重要的意義。本文采用系留探空儀(ADAS)對該地區(qū)進行了兩期探空觀測實驗,分別為:2013年12月26日~2014年01月10日(共15天)、2014年6月6日~2014年6月24日(共19天)。在此基礎上,開展以下三個方面的研究工作:(1)通過分析觀測到的風、溫、濕、壓等氣象要素隨高度的分布數據,研究得到該地區(qū)、不同時間氣象要素垂直廓線特征以及逆溫、大氣混合層等邊界層結構特征;(2)結合大尺度氣象資料(地面天氣圖與高空環(huán)流形勢),研究宏觀氣象條件對邊界層結構的影響;(3)結合同期的大氣污染物濃度數據,分析邊界層結構對主要大氣污染物(PM2.5、S02、NOx以及O3)濃度的影響。主要結論如下:(1)仙林地區(qū)夏季平均混合層高度為1200m,冬季平均混合層高度700m,夏季明顯高于冬季;逆溫層主要發(fā)生在夜間,多數為接地逆溫,冬季接地逆溫平均厚度為107.5m,逆溫強度平均為1.14℃/100m,而夏季接地逆溫平均厚度為190.48m,逆溫強度平均為0.7℃/100m,說明南京仙林地區(qū)冬季多為強而低的接地逆溫,夏季多為弱而高的接地逆溫。(2)仙林地區(qū)冬季多數由均壓場與高壓控制,均壓場控制下平均混合層高度400m,高壓控制下平均混合層高度為825m,而冬季在冷性高壓系統(tǒng)緩慢移動中,邊界層結構穩(wěn)定,混合層高度較低;夏季主要為副熱帶高壓控制與均壓場控制,副高控制下平均混合層高度為950m,均壓場控制下平均混合層高度為1000m。在臺風外圍下沉氣流控制下邊界層結構變化迅速,但是在低壓槽類型控制下邊界層混合層高度偏低,且相對濕度較大,風速變化較大。(3)空氣污染物地面濃度與混合層高度在冬季表現出較好的反相關關系,即污染物濃度變化與邊界層結構變化趨于同步;但在夏季,這種反相關性較弱。這可能是因為夏季氣象條件變化較快,邊界層內水平擴散作用明顯,從而削弱了這種相關性。邊界層的日變化對不同污染物的地面濃度表現出不同的影響特征。對SO2來說,由于多為高架點源,夜間容易在高空形成高濃度區(qū),當早晨混合層高度發(fā)展至高空煙流高度時,高濃度的SO2被迅速帶至地面,在10:00左右形成一個峰值。對NO2來說,主要為移動排放源,受邊界層結構變化影響,垂直擴散效果較好,因此NO2濃度與混合層高度有較好的反相關關系,14:00左右達到濃度低值。對于O3來說,受太陽輻射影響明顯,午后14:00左右出現濃度峰值。
[Abstract]:The atmospheric boundary layer is the atmosphere of the lower troposphere, which is directly affected by the ground. Turbulent motion is the main feature of the boundary layer. The complex meteorological conditions in the atmospheric boundary layer affect the whole atmospheric evolution process. It has a very important impact on the diffusion and removal of pollutants and the stability and change of global climate. To explore the structure of atmospheric boundary layer of Nanjing Xianlin area and its influence on air pollution, it is helpful to know the characteristics of air pollution in the region and the evolution of the law, to develop effective pollution control measures has important significance. In this paper, two phase sounding observation experiments were carried out in the area by means of mooring sonde (ADAS). They were: December 26, 2013 to 2014 01, 10 (15 days), and June 6, 2014 to June 24, 2014 (19 days). On this basis, to carry out research work in the following three aspects: (1) through the analysis of the observed wind, temperature, humidity, pressure and other meteorological factors with the distribution of height data, study characteristics of the region and different time characteristics of meteorological elements and temperature inversion, vertical profiles of atmospheric mixed layer and boundary layer structure; (2) with large scale meteorological data (surface weather chart and the upper air circulation situation), macro research on the meteorological conditions on the influence of boundary layer structure; (3) combined with the atmospheric pollutant concentration data for the same period, analysis of the structure of the boundary layer on the main atmospheric pollutants (PM2.5, S02, NOx and O3) concentration. The main conclusions are as follows: (1) Xianlin area summer average mixed layer height is 1200m, the average winter mixed layer height 700m, significantly higher in summer than in winter; the inversion layer mainly occurs at night, most of the ground temperature inversion, ground temperature inversion the average thickness is 107.5m in winter, the average intensity of inversion /100m 1.14 degrees, while in summer the ground inversion of the average thickness is 190.48m, the average intensity of inversion is 0.7 DEG /100m, Nanjing Xianlin area in winter is strong and low ground temperature inversion, and summer for the weak and the high ground temperature inversion. (2) the winter Xianlin area mostly by the lower pressure and pressure control, uniform pressure field under the control of the average mixed layer height 400m, the average pressure under the control of the mixed layer height is 825m, and the winter in the cold high pressure system moved slowly, the stability of the boundary layer structure, the mixed layer height is low; the main summer subtropical high control with the lower pressure, under the control of subtropical high average mixed layer height is 950m, uniform pressure field under the control of the average mixed layer height is 1000m. The structure of the boundary layer changes rapidly under the control of the external subsidence of the typhoon, but under the control of the low pressure trough type, the mixing layer height of the boundary layer is low, and the relative humidity is relatively large, and the wind speed varies greatly. (3) there is a good inverse correlation between the surface concentration of air pollutants and the height of mixed layer in winter. That is, the change of pollutant concentration is synchronous with the change of boundary layer structure, but this correlation is weaker in summer. This may be due to the rapid changes in the weather conditions in summer and the obvious horizontal diffusion in the boundary layer, which weaken the correlation. The diurnal variation of the boundary layer has a different influence on the ground concentration of different pollutants. For SO2, because most of them are elevated point sources, it is easy to form high concentration area at high altitude at night. When the height of mixed layer develops to the height of high altitude in the morning, the high concentration of SO2 is brought to the ground quickly, forming a peak at about 10:00. For NO2, the main source of mobile emissions is affected by the change of the boundary layer structure, and the vertical diffusion effect is better. Therefore, the NO2 concentration has a good inverse correlation with the height of the mixing layer, reaching the low concentration around 14:00. For O3, the influence of solar radiation is obvious, and the peak of concentration at around 14:00 in the afternoon.
【學位授予單位】:南京大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X51
【參考文獻】
相關期刊論文 前10條
1 徐桂榮;崔春光;周志敏;張兵;李躍清;趙興炳;;利用探空資料估算青藏高原及下游地區(qū)大氣邊界層高度[J];暴雨災害;2014年03期
2 王躍;王莉莉;趙廣娜;王躍思;安俊琳;劉子銳;唐貴謙;;北京冬季PM2.5重污染時段不同尺度環(huán)流形勢及邊界層結構分析[J];氣候與環(huán)境研究;2014年02期
3 王耀庭;李威;張小玲;孟偉;;北京城區(qū)夏季靜穩(wěn)天氣下大氣邊界層與大氣污染的關系[J];環(huán)境科學研究;2012年10期
4 喬娟;張強;張杰;王勝;;西北干旱區(qū)冬、夏季大氣邊界層結構對比研究[J];中國沙漠;2010年02期
5 何清;楊興華;劉強;梁云;霍文;艾力·買買提明;;烏魯木齊冬季大氣邊界層溫度和風廓線觀測研究[J];沙漠與綠洲氣象;2010年01期
6 蔣維楣;周榮衛(wèi);劉紅年;;精細城市邊界層模式的建立及應用研究[J];南京大學學報(自然科學版);2009年06期
7 王東東;朱彬;王靜;;利用差分吸收光譜系統(tǒng)對O_3,SO_2和NO_2的監(jiān)測分析[J];環(huán)境科學研究;2009年06期
8 徐桂榮;崔春光;徐海富;王曉芳;;宜昌冬季兩次降水過程大氣邊界層的觀測分析[J];暴雨災害;2008年04期
9 劉潔;張小玲;徐曉峰;徐宏輝;;北京地區(qū)SO_2、NO_x、O_3和PM_(2.5)變化特征的城郊對比分析[J];環(huán)境科學;2008年04期
10 王詠薇;蔣維楣;劉紅年;;大氣數值模式中城市效應參數化方案研究進展[J];地球科學進展;2008年04期
,本文編號:1341265
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1341265.html