幾種復(fù)合物修飾電極的制備及其對水環(huán)境中有機(jī)污染物電化學(xué)傳感研究
本文關(guān)鍵詞:幾種復(fù)合物修飾電極的制備及其對水環(huán)境中有機(jī)污染物電化學(xué)傳感研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 苯二酚 對硝基氯苯 對氨基苯酚 電化學(xué)傳感器 導(dǎo)電聚合物 碳納米材料
【摘要】:有機(jī)污染物是指對自然環(huán)境以及人類健康產(chǎn)生威脅的天然存在或者人工合成的化學(xué)物質(zhì)。苯二酚,對硝基氯苯和對氨基苯酚由于大量生產(chǎn)與使用,已對環(huán)境造成污染,是典型的有機(jī)污染物,在水環(huán)境中濃度低、毒性大,引起了人們高度關(guān)注。因此,研究分析方法對其進(jìn)行痕量檢測具有重要的意義。目前,苯二酚,對硝基氯苯和對氨基苯酚的檢測方法主要集中于色譜法、質(zhì)譜法、免疫分析、毛細(xì)管電泳和光學(xué)分析,但是檢測成本高、樣品預(yù)處理步驟復(fù)雜、檢測周期長、檢測限較高。而電化學(xué)傳感器操作簡便快捷、性價比高、靈敏度高、檢測限低、特異性好,已成為檢測水環(huán)境中痕量有機(jī)污染物的重要方法之一。本文用玻碳(GC)電極作為基底傳感器,設(shè)計了三種不同的電化學(xué)傳感器用來檢測水環(huán)境中的有機(jī)污染物:(1)通過電化學(xué)聚合精氨酸(L-Arg)單體,制得聚精氨酸(P-L-Arg)修飾的GC電極,利用掃描電鏡(SEM)和電化學(xué)方法對P-L-Arg進(jìn)行表征,證實(shí)了聚合物復(fù)合成功。研究構(gòu)建了用于苯二酚三種異構(gòu)體同時檢測的高靈敏電化學(xué)傳感器,在最優(yōu)條件下,三種目標(biāo)物的檢測范圍都是0.1μM~110μM,相關(guān)系數(shù)R分別為0.9860(對苯二酚)、0.9880(鄰苯二酚)和0.9980(間苯二酚),檢測限分別是0.01μM、0.03μM和0.1μM,具有很好的穩(wěn)定性和重復(fù)性。并成功用于檢測自來水和河水中的苯二酚異構(gòu)體,實(shí)際水樣檢測的相對標(biāo)準(zhǔn)偏差小于5.5%,回收率為89.5%~103%。(2)采用濕化學(xué)法將含氧基團(tuán)功能化修飾到碳納米角(CNHs)表面,通過部分剝離制備了CNHs/氧化石墨烯(GO)復(fù)合材料。通過透射電鏡(TEM)、拉曼光譜儀(Raman)、X-射線衍射儀(XRD)和電化學(xué)方法對材料進(jìn)行表征,證實(shí)了材料復(fù)合成功。利用CNHs良好的電化學(xué)性質(zhì)、大的比表面積、特殊的內(nèi)部結(jié)構(gòu)和GO優(yōu)異的導(dǎo)電性、良好的分散性,研究構(gòu)造了用于對硝基氯苯(PCNB)高靈敏檢測的電化學(xué)傳感器。檢測結(jié)果表明,PCNB的檢測范圍是0.1μM~90μM,檢測限是0.01μM,相關(guān)實(shí)驗(yàn)系數(shù)R為0.9826。并成功用于檢測實(shí)際水樣中的PCNB,實(shí)際水樣的相對標(biāo)準(zhǔn)偏差小于5.18%,回收率為96.5%~99.1%。(3)通過多巴胺(DA)在二氧化硅(SiO_2)表面自發(fā)聚合得到聚多巴胺(PDA)/SiO_2。利用帶正電的PDA和帶負(fù)電的GO之間的靜電吸引作用,將GO修飾到PDA/SiO_2表面,高溫碳化后用氫氟酸(HF)將SiO_2刻蝕得到石墨烯(GN)/摻氮空心碳球(NHCS),最后還原氯金酸,將金納米顆粒(AuNPs)修飾到GN/NHCS材料表面制得AuNPs/GN/NHCS復(fù)合材料。采用TEM、Raman、XRD和電化學(xué)方法進(jìn)行表征,證實(shí)了材料復(fù)合成功。利用NHCS良好的電化學(xué)性質(zhì)、大的比表面積、較強(qiáng)的吸附能力,GN良好的導(dǎo)電性和AuNPs很好的電催化活性,研究構(gòu)造了高靈敏檢測對氨基苯酚(4-Ap)的電化學(xué)傳感器。4-Ap的線性范圍為0.1μM~40μM,相關(guān)系數(shù)R為0.9989,檢測限為0.01μM。該傳感器成功用于檢測河水中的4-Ap,相對標(biāo)準(zhǔn)偏差小于5.4%,回收率為92.5%~101.6%。
[Abstract]:Organic pollutants are natural or synthetic chemicals that pose a threat to the natural environment and human health. Hydroquinone, p-nitrochlorobenzene and p-aminophenol due to a large number of production and use, has caused pollution to the environment, is a typical organic pollutants, low concentration in water toxicity, aroused great concern. Therefore, it is of great significance to study the analysis method for trace detection. At present, hydroquinone, nitrochlorobenzene and detection method of p-aminophenol mainly concentrated on chromatography, mass spectrometry and immunoassay analysis, capillary electrophoresis and optical detection, but the cost is high, the sample pretreatment steps of complex, long test cycle, high detection limit. Electrochemical sensors are simple, fast, cost-effective, sensitive, low detection and specific, and have become an important way to detect trace organic pollutants in water environment. This glassy carbon electrode as the substrate (GC) sensor, designed three kinds of organic pollutants in different electrochemical sensor for detecting water environment: (1) by electrochemical polymerization of arginine (L-Arg) monomer, preparation of poly arginine (P-L-Arg) GC modified electrode, using scanning electron microscopy (SEM) electrochemical methods and characterization of P-L-Arg, confirmed the success of polymer composite. Study on the construction of a highly sensitive electrochemical sensor for simultaneous detection of three isomers for hydroquinone, under the optimal conditions, the detection range of three target is 0.1 mu M~110 mu M, the correlation coefficient R was 0.9860 (hydroquinone), 0.9880 (catechol) and 0.9980 (benzene two phenol), the detection limit is respectively. 0.01 M, 0.03 M and 0.1 M, has good stability and repeatability. And for the success of dihydroxybenzene isomers detected in tap water and river water, the relative standard deviation of actual water samples is less than 5.5%, the recovery rate was 89.5%~103%. (2) the functionalized oxygen group was functionalized to the surface of carbon nanometers (CNHs) by wet chemical method, and CNHs/ graphene oxide (GO) composite was prepared by partial peeling. The materials were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), X- ray diffractometer (XRD) and electrochemical methods, which confirmed the success of the composites. An electrochemical sensor for high sensitivity detection of p-nitrochlorobenzene (PCNB) has been developed by using CNHs's good electrochemical properties, large specific surface area, special internal structure, excellent conductivity and good dispersion of GO. The detection results show that the detection range of PCNB is 0.1 mu M~90 mu M, the detection limit is 0.01 mu M, and the relative experimental coefficient R is 0.9826. It has been successfully used to detect PCNB in the actual water samples. The relative standard deviation of the actual water sample is less than 5.18% and the recovery rate is 96.5%~99.1%. (3) polydopamine (PDA) /SiO_2 is obtained by spontaneous polymerization of dopamine (DA) on the surface of silicon dioxide (SiO_2). The positively charged PDA and electrostatic interaction between the negatively charged GO attraction, GO was modified on the surface of PDA/SiO_2 after high temperature carbonization with hydrofluoric acid (HF) SiO_2 (GN) etching to obtain graphene / nitrogen doped hollow carbon spheres (NHCS), the reduction of gold chloride acid, gold nanoparticles (AuNPs) modified to the surface of GN/NHCS AuNPs/GN/NHCS composite material. The materials were characterized by TEM, Raman, XRD and electrochemical methods, which confirmed the success of the composites. A highly sensitive electrochemical sensor for detection of p-aminophenol (4-Ap) has been developed by using NHCS's good electrochemical properties, large specific surface area, strong adsorption capacity, good conductivity and good electrocatalytic activity of GN. AuNPs has been applied to the detection of p-aminophenol (4-Ap). The linear range of 4-Ap is 0.1 mu M~40 mu M, the correlation coefficient R is 0.9989, and the detection limit is 0.01 mu M. The sensor has been successfully used to detect 4-Ap in river water. The relative standard deviation is less than 5.4% and the recovery rate is 92.5%~101.6%.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O657.1;X832
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓俊鳳;方夢茹;丁志恒;韓成;;銀摻雜聚谷氨酸修飾電極對抗壞血酸的催化氧化[J];分析科學(xué)學(xué)報;2015年05期
2 許光日;范世鴿;陳昌國;;金電極上苯二酚異構(gòu)體的電化學(xué)性質(zhì)及同時測定[J];應(yīng)用化學(xué);2013年05期
3 李學(xué)全;孫成鈺;趙倩;吳志珊;許丹科;鐘文英;;單壁碳納米角的氧化、修飾及分散性[J];高等學(xué);瘜W(xué)學(xué)報;2013年04期
4 王春燕;由天艷;田堅;;聚谷氨酸修飾電極同時檢測對苯二酚和鄰苯二酚[J];分析化學(xué);2011年04期
5 崔香;郭幼敬;常敏;;基于三維熒光光譜法的水樣中苯酚和對苯二酚含量測定[J];安徽農(nóng)業(yè)科學(xué);2009年24期
6 羅若榮;林凱;陳方舟;陳慧玲;黃薇;趙美英;;深圳市不同魚體中揮發(fā)酚污染及評價[J];中國公共衛(wèi)生;2008年06期
7 繆月英;范寶儉;高金波;宗希明;;松花江佳木斯江段水污染物的跟蹤測試[J];黑龍江醫(yī)藥科學(xué);2008年03期
8 朱永春;錢逸泰;;溶劑熱法合成碳納米材料[J];無機(jī)化學(xué)學(xué)報;2008年04期
9 王曉崗;劉往專;吳慶生;丁亞平;樊雅娟;;表面活性劑增強(qiáng)下萘酚異構(gòu)體的電化學(xué)快速測定[J];應(yīng)用化學(xué);2007年09期
10 李玉平,曹宏斌,張懿;硝基苯在碳納米管修飾電極上的電化學(xué)行為及其分析應(yīng)用[J];環(huán)境化學(xué);2005年03期
相關(guān)博士學(xué)位論文 前1條
1 周忠亮;納米材料電化學(xué)傳感器及環(huán)境監(jiān)測應(yīng)用研究[D];北京工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 成玉萍;新型離子液體/多壁碳納米管/殼聚糖修飾電極直接測量苯二酚[D];江南大學(xué);2009年
,本文編號:1340100
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1340100.html