基于GF-4衛(wèi)星影像時序光譜特征的居民地信息提取研究
[Abstract]:With the promotion and implementation of "The Belt and Road Initiative" and the strategic decision of new urbanization, the spatial pattern of China's development in the coming decades will be greatly changed. Since the reform and opening up in 1978, the economy of our country has been growing rapidly, it has leaped to the forefront of the world in a short period of time, the harmonious development of the society, the quality of life of the people has been obviously improved, and the speed of the expansion of the residential land has also become more and more rapid. Rapid and accurate identification and extraction of residential land is of great practical significance in promoting national strategic decision-making, realizing digital city, assisting urban planning and so on. As an important part of China's high-resolution Earth observation system, the GF-4 satellite can effectively identify ground changes in a timely manner and effectively support natural disasters such as earthquakes, floods, droughts, typhoons, and so on. Climate change research, forestry and water resources environmental survey and other major industry applications. In this paper, we use GF-4 satellite image and its high-time spectrum to extract and analyze the difference of spectral features between residential land and other land classes, and use different methods to identify and extract resident land information combined with temporal spectrum. The thesis starts from the following parts: firstly, this paper introduces the research background and significance of this paper, and then introduces the research status and progress of remote sensing information extraction technology and residential identification extraction technology, which are closely related to the subject of the thesis. And put forward the research content and technical route. Then, the GF-4 satellite image is introduced, and the image is pre-processed to eliminate the errors from various aspects. Then, by analyzing the spectral index characteristics of typical ground objects in GF-4 images, a method of extracting resident land information based on spectral feature decision tree is proposed, and then the temporal spectral index features are analyzed. A method of extracting resident land information based on temporal spectral feature decision tree is proposed. On the basis of this method, temporal spectral index feature and depth learning technology are introduced into the identification and extraction of residential information at the same time. A method of extracting resident land information based on full convolution neural network based on temporal spectral features is proposed in this paper. Finally, the experimental results of the three methods are compared and analyzed, and a conclusion is drawn. The main conclusions of this paper are as follows: (1) the change of solar height angle not only affects the spectral size of the ground object, Even it has some influence on the spectral variation rate and the rate of change, and the spectral characteristics of different feature types vary with the solar height angle. (2) when the decision tree method is used, the spectral characteristics of the ground features vary with the solar height angle. (2) when the decision tree method is used, the spectral characteristics of the ground features vary with the solar height angle. Compared with the extraction of spectral features only, the time series spectral feature is used to extract the resident land information. The extraction accuracy is increased from 89.85% to 93.38%. (3) the extraction accuracy of resident land information based on temporal spectral features can be improved by using full convolution neural network, and the extraction precision is increased from 93.38% to 95.15%. In addition, the innovations of this thesis are as follows: (1) the relationship between temporal spectral features and solar height angle is introduced into the decision tree model, and compared with the resident extraction method which only makes use of spectral features, (2) combining the sequential spectral features with the full convolution neural network method in depth learning, the classification extraction accuracy is improved even more than other extraction methods which do not take into account the sequential spectral features or other extraction methods that do not use in-depth learning. (2) the sequential spectral features are combined with the full convolution neural network method in depth learning. Based on the temporal spectrum of GF-4 satellite remote sensing image, this paper studies the method of identification and extraction of land and land, and provides dynamic updating data for disaster reduction, disaster prevention, urbanization, urban fine management and land and resource management, and so on. It also provides technical and methodological support and demonstration guidance for the application of home-made high-grade series satellite data remote sensing products.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院遙感與數(shù)字地球研究所)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P237
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;《中國污染水體光譜特征》一書出版[J];遙感信息;2001年03期
2 祝昌漢,朱福康,劉玉潔;地表光譜特征[J];氣象;1992年03期
3 包安明,吳中瑩;可見~近紅外波段礦物和巖石光譜特征——以新疆北疆部分地區(qū)巖石為例[J];干旱區(qū)地理;1993年03期
4 袁春瓊,胡列群;北疆一些水域光譜特征淺析[J];新疆氣象;1997年03期
5 楊柏林;巖礦光譜特征在遙感地質(zhì)找礦中的作用[J];地質(zhì)地球化學(xué);1989年05期
6 董秉宇;張建洪;;鉆石的輻射著色處理、色心及光譜特征(一)[J];國外非金屬礦與寶石;1990年04期
7 高來之,楊柏林;應(yīng)用于油氣資源遙感的近紅外石油物質(zhì)光譜特征研究[J];國土資源遙感;1991年04期
8 徐金鴻;;粵西不同母巖型紅土野外光譜特征[J];測繪科學(xué);2009年S2期
9 謝慧瑗,呂斯驊,金麗芳;幾種巖石的中紅外反射光譜特征[J];科學(xué)通報;1983年20期
10 朱亞平;劉健文;白潔;;云的光譜和紋理特征統(tǒng)計分析[J];遙感技術(shù)與應(yīng)用;2006年01期
相關(guān)會議論文 前8條
1 張登榮;董傳萬;閻強;鄧超;;浙東火山巖區(qū)巖墻可見光-近紅外遙感光譜特征[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
2 徐金鴻;;粵西不同母巖型紅土野外光譜特征[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
3 吳德文;吳健生;周正武;張云峰;;青海芒崖金多金屬成礦區(qū)巖石光譜特征及應(yīng)用[A];第十三屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2001年
4 高占國;張利權(quán);;鹽沼植被光譜特征的間接排序識別分析[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
5 王曉梅;張玉鈞;劉文清;夏慧;;基于光譜特征的植被遙感探測及應(yīng)用研究[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
6 林穎;徐衛(wèi)明;袁立銀;王建宇;;熱紅外高光譜非均勻性校正及光譜特征提取[A];第八屆成像光譜技術(shù)與應(yīng)用研討會暨交叉學(xué)科論壇文集[C];2010年
7 鄧書斌;陳秋錦;;植被光譜特征與植被指數(shù)綜述[A];第十七屆中國遙感大會摘要集[C];2010年
8 周寧;尹球;張鳳麗;朱迅;;服裝面料光譜特征初探[A];成像光譜技術(shù)與應(yīng)用研討會論文集[C];2002年
相關(guān)重要報紙文章 前1條
1 本報記者 沈俊霖;19個“電子眼”監(jiān)測膠州灣[N];青島日報;2011年
相關(guān)博士學(xué)位論文 前3條
1 劉丙新;基于高光譜特征的水上油膜提取與分析研究[D];大連海事大學(xué);2013年
2 高占國;長江口鹽沼植被的光譜特征研究[D];華東師范大學(xué);2006年
3 周廣柱;銅礦區(qū)植物光譜特征與信息提取[D];山東科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 曲暢;基于GF-4衛(wèi)星影像時序光譜特征的居民地信息提取研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院遙感與數(shù)字地球研究所);2017年
2 劉效棟;黃土臺塬區(qū)土壤有機質(zhì)高光譜特征及反演研究[D];西北農(nóng)林科技大學(xué);2015年
3 張宣宣;玉米鐵毒脅迫的光譜特征與葉綠素含量反演實驗研究[D];東北大學(xué);2014年
4 張健;錫林郭勒典型草原植被光譜特征研究[D];內(nèi)蒙古大學(xué);2016年
5 劉璇;基于高光譜遙感圖像的植被光譜特征分析及含水量反演[D];哈爾濱工業(yè)大學(xué);2016年
6 王祥峰;基于光譜特征以及養(yǎng)分指示因子的土壤養(yǎng)分遙感監(jiān)測研究[D];遼寧工程技術(shù)大學(xué);2015年
7 趙思穎;稻田鎘污染高光譜響應(yīng)及其關(guān)系研究[D];江西師范大學(xué);2016年
8 孫勃巖;油菜的高光譜特征及其生理參數(shù)估算模型研究[D];西北農(nóng)林科技大學(xué);2017年
9 段瑞魯;科爾沁沙地典型沙丘植被光譜特征及其覆蓋變化分析[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2013年
10 張薈平;基于光譜特征不確定性的遙感影像分類研究[D];華中科技大學(xué);2013年
,本文編號:2446454
本文鏈接:http://sikaile.net/shekelunwen/ydyl/2446454.html