新型Cu-Ni-Al合金在人工海水中耐蝕性能研究
本文選題:Cu-Ni-Al合金 切入點(diǎn):人工海水 出處:《河南科技大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)“一帶一路”、“科技興!钡戎卮髴(zhàn)略工程的實(shí)施,對(duì)耐蝕銅合金的需求日益迫切。以海洋工程用耐蝕銅合金為例,年需求量約40萬(wàn)噸,年產(chǎn)值約350億元。同時(shí),復(fù)雜多變的海洋條件使得耐蝕銅合金的服役條件日益苛刻,關(guān)鍵部件的安全可靠性越來越高,對(duì)合金的耐蝕性能提出了更高要求。然而,目前研究和應(yīng)用較多的傳統(tǒng)黃銅、B10、B30等耐蝕銅合金無(wú)法滿足高端領(lǐng)域使用要求。因此,在傳統(tǒng)Cu-Ni系耐蝕銅合金的基礎(chǔ)上,開展苛刻服役條件下新型高耐蝕銅合金的設(shè)計(jì)開發(fā)以及耐蝕機(jī)理研究,對(duì)于我國(guó)海洋工程用耐蝕銅合金的基礎(chǔ)理論研究和工程化應(yīng)用具有重要意義。本文針對(duì)上述問題,在傳統(tǒng)Cu-Ni系耐蝕銅合金的基礎(chǔ)上,通過添加Al、Fe、Mn、RE等微合金化元素,制備了新型Cu-Ni-Al耐蝕銅合金;通過靜態(tài)人工海水全浸試驗(yàn),研究了海水浸泡時(shí)間對(duì)合金腐蝕速率和腐蝕形貌的影響規(guī)律,揭示了稀土添加量與耐蝕性能的內(nèi)在關(guān)聯(lián);通過電化學(xué)測(cè)試手段,研究了海水浸泡時(shí)間與合金電化學(xué)阻抗譜等電化學(xué)性能的內(nèi)在聯(lián)系,探索了稀土添加量對(duì)合金電化學(xué)行為的影響規(guī)律;通過海水沖刷試驗(yàn),研究了沖刷速度和時(shí)間對(duì)合金腐蝕速率和腐蝕形貌的影響規(guī)律,揭示了稀土對(duì)合金沖刷腐蝕行為的作用機(jī)制。研究結(jié)論如下:1.浸泡條件下,Cu-Ni-Al合金和添加0.014%RE、0.035%RE的Cu-Ni-Al合金的腐蝕速率變化規(guī)律均為:初期腐蝕速率較大,隨浸泡時(shí)間延長(zhǎng),合金表面鈍化膜開始形成并逐漸完善,合金腐蝕速率降低并趨于平穩(wěn);在浸泡條件下,隨著稀土的添加,合金耐腐蝕性能提高,腐蝕速率降低,168 h時(shí)添加0.014%RE、0.035%RE的Cu-Ni-Al合金腐蝕速率分別比Cu-Ni-Al合金降低26%和29%,添加0.035%RE的Cu-Ni-Al合金耐腐蝕性最好。2.浸泡條件下,Cu-Ni-Al合金和添加0.014%RE、0.035%RE的Cu-Ni-Al合金的電化學(xué)行為變化規(guī)律相同,在浸泡初期,12 h時(shí)電化學(xué)阻抗譜中開始出現(xiàn)容抗弧,此時(shí)合金表面已經(jīng)開始形成鈍化膜,隨浸泡時(shí)間延長(zhǎng),容抗弧半徑增大,三種合金均在168 h時(shí)達(dá)到穩(wěn)定,合金表面鈍化膜處于溶解與生成的動(dòng)態(tài)平衡之中;在浸泡條件下,隨著稀土的添加,合金自腐蝕電位提高,腐蝕電流密度降低,添加0.035%RE的Cu-Ni-Al合金自腐蝕電流密度最低為2.179×10-6 A·cm-2,比Cu-Ni-Al合金和添加0.014%RE的Cu-Ni-Al合金分別降低24.2%和24.1%。3.在流動(dòng)海水中,相同流速下Cu-Ni-Al合金和添加0.014%RE、0.035%RE的Cu-Ni-Al合金的腐蝕速率變化規(guī)律均為:初期腐蝕速率較高,隨沖刷時(shí)間延長(zhǎng),合金腐蝕速率降低并趨于穩(wěn)定,合金表面鈍化膜隨時(shí)間延長(zhǎng)逐漸完善,性能提高;不同流速下Cu-Ni-Al合金和添加0.014%RE、0.035%RE的Cu-Ni-Al合金的腐蝕速率變化規(guī)律有所差異,1.5 m/s條件下初期12 h到24 h時(shí)合金腐蝕速率降低較快,合金表面鈍化膜形成后較為穩(wěn)定不易受到破壞;24 h到96 h期間隨著流速增大,合金腐蝕速率升高,合金表面鈍化膜易受到海水沖擊作用而破壞;96 h后合金腐蝕速率趨于穩(wěn)定,合金表面鈍化膜已經(jīng)達(dá)到穩(wěn)定狀態(tài)。4.在流動(dòng)海水中,隨著稀土添加,合金耐腐蝕性能提高,在1.5 m/s和3.0m/s流速下,合金腐蝕速率相差不大,但添加稀土的合金鈍化膜性能較好,合金腐蝕速率降低較快;在5.0 m/s流速下合金初期腐蝕速率差異較小,隨時(shí)間延長(zhǎng),添加稀土的合金腐蝕速率較低,合金鈍化膜性能更優(yōu),耐蝕性能提高,添加0.035%RE的Cu-Ni-Al合金腐蝕速率為0.1488 g·m-2·h-1,腐蝕速率比Cu-Ni-Al合金降低43%。
[Abstract]:Along with our country "The Belt and Road", "the implementation of major strategic project technology and the sea", on the corrosion resistance of copper alloy. With the increasingly urgent demand for marine engineering alloy as an example, the annual demand of about 400 thousand tons, the annual output value of about 35 billion yuan. At the same time, the complex sea conditions make the service condition to corrosion the copper alloy has been harsh, safety and reliability of key parts of more and more high, put forward higher requirements on the corrosion resistance of alloys. However, more research and application of traditional brass, B10, B30 alloy can not meet the high-end use requirements. Therefore, based on the traditional Cu-Ni system on corrosion resistance of copper alloy to carry out the design and development of new service demanding, high corrosion resistance and corrosion resistance of copper alloy under the condition of mechanism research for corrosion resistance of copper alloy based on theoretical research and engineering application significance of Ocean Engineering in China. In this paper. The problem, based on the traditional Cu-Ni system on corrosion resistance of copper alloy, with the addition of Al, Fe, Mn, RE and other micro alloying elements, the new Cu-Ni-Al alloy was prepared by static; artificial seawater immersion test, the influence law of the alloy corrosion rate and morphology of the seawater immersion time was studied, revealing internal connection and corrosion resistance of rare earth content; by means of electrochemical testing, analyzing the relation between seawater immersion time and alloy electrochemical impedance spectroscopy electrochemical performance, explores the influence of the addition of rare earth alloys on the electrochemical behavior of the law; through sea water scouring, influence on the alloy corrosion rate and corrosion morphology and scouring velocity time study, reveal the mechanism of rare earth on erosion corrosion behavior of the alloy. The research conclusions are as follows: 1. soaking condition, Cu-Ni-Al alloy and Cu-Ni-Al alloy added 0.014%RE, 0.035%RE The corrosion rate changes are: the initial corrosion rate is high, with the increase of immersion time, the alloy surface passivation film began to form and gradually improve, corrosion rate of the alloy decreases and tends to be stable; in immersion conditions, with the addition of rare earth alloy, and improve corrosion resistance, the corrosion rate decreased, adding 0.014%RE 168 h, Cu-Ni-Al alloy the corrosion rate of 0.035%RE were 29% and 26% lower than that of Cu-Ni-Al alloy, corrosion resistance of Cu-Ni-Al alloy.2. the best soaking conditions of adding 0.035%RE, Cu-Ni-Al and 0.014%RE alloy added, the electrochemical behavior changes of Cu-Ni-Al alloy 0.035%RE the same, at the initial stage of immersion, electrochemical impedance spectroscopy of 12 h began to appear in the capacitive arcs, this alloy surface has been to form a passive film, with the increase of immersion time, increasing the capacitance arc radius of three alloys, reached the stable at 168 h, the alloy surface passivation film in solution With the dynamic balance of generation; in immersion conditions, with the addition of rare earth alloy, corrosion potential, corrosion current density decreased, the addition of 0.035%RE Cu-Ni-Al alloy, the corrosion current density for a minimum of 2.179 * 10-6 A, cm-2, and 24.1%.3. decreased by 24.2% in flowing seawater respectively than that of Cu-Ni-Al alloy and Cu-Ni-Al alloy added 0.014%RE Cu-Ni-Al, the same flow rate and the addition of 0.014%RE alloy, the corrosion rate of change of Cu-Ni-Al alloy 0.035%RE are: the initial corrosion rate is high, with scouring time, corrosion rate of the alloy decreased and stabilized, the passivation film on the surface of alloy gradually perfect, improve the performance of Cu-Ni-Al alloy under different velocity; and adding 0.014%RE, corrosion the rate of change of Cu-Ni-Al alloy 0.035%RE the difference under the condition of 1.5 m/s at the beginning of 12 h to 24 h alloy corrosion rate decreased rapidly, alloy The surface passivation film after the formation of a more stable are not easy to be damaged; 24 h to 96 h during the period with increased velocity increases and the corrosion rate of the alloy, alloy surface passivation membrane is susceptible to water impact damage; after 96 h alloy corrosion rate tends to be stable, the alloy surface passivation film has reached a steady state in flowing seawater with.4.. Addition of rare earth alloy, the corrosion resistance is improved, at 1.5 m/s and the 3.0m/s flow rate, corrosion rate of the alloy are similar, but the addition of rare earth alloy passivation performance good, corrosion rate of the alloy decreases quickly; at a flow rate of 5 m/s alloy at the initial corrosion rate difference is small, with time prolonging, the corrosion rate of the alloy of rare earth is low. The performance of passive film alloy has better corrosion resistance, the corrosion rate of Cu-Ni-Al alloy increase, adding 0.035%RE 0.1488 G - m-2 - H-1, the corrosion rate of 43%. lower than that of Cu-Ni-Al alloy
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG172.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陶業(yè)立;汪洋;劉蘭軒;陶加法;劉秀生;;纖維增強(qiáng)樹脂基復(fù)合材料的空泡腐蝕試驗(yàn)研究[J];材料開發(fā)與應(yīng)用;2015年05期
2 張兵;許曉靜;陳樹東;蔣偉;;鋯和鍶對(duì)鑄態(tài)鎳鋁青銅組織與性能的影響[J];材料熱處理學(xué)報(bào);2015年03期
3 李婷;張耀武;呂巖;馬坡;;船體材料腐蝕與防護(hù)措施的研究進(jìn)展[J];廣州化工;2015年06期
4 金云學(xué);都春燕;王磊;;鎳鋁青銅組織在熱處理過程中的演變規(guī)律[J];特種鑄造及有色合金;2014年09期
5 許曉靜;陳樹東;楚滿軍;潘勵(lì);魏建;侍國(guó)防;;鈧、鋯和鍶復(fù)合微合金化鑄態(tài)鎳鋁青銅的顯微組織與性能[J];中國(guó)有色金屬學(xué)報(bào);2013年12期
6 陳翔峰;穆振軍;許春生;任潤(rùn)桃;;銅及銅合金在廈門海域?qū)嵑1┞陡g規(guī)律研究[J];裝備環(huán)境工程;2013年02期
7 羅宗強(qiáng);張衛(wèi)文;辛保亮;李元元;;Cu-17Ni-3Al-X合金在中性鹽霧中的腐蝕行為[J];中國(guó)有色金屬學(xué)報(bào);2012年01期
8 雍興躍;吉靜;張雅琴;李棟梁;張占佳;;空化作用下奧氏體不銹鋼空泡腐蝕的過程與AFM形貌[J];腐蝕科學(xué)與防護(hù)技術(shù);2011年02期
9 林高用;萬(wàn)迎春;楊偉;魏筆;張勝華;唐鵬鈞;;稀土含量對(duì)BFe10-1-1鐵白銅在流動(dòng)人工海水中的腐蝕行為影響[J];腐蝕科學(xué)與防護(hù)技術(shù);2010年06期
10 張建華;;粉末冶金制備銅鎳合金的研究[J];中國(guó)科技信息;2010年22期
,本文編號(hào):1654936
本文鏈接:http://sikaile.net/shekelunwen/ydyl/1654936.html