金庫(kù)門禁指紋識(shí)別系統(tǒng)算法研究
發(fā)布時(shí)間:2018-03-24 05:22
本文選題:圖像處理 切入點(diǎn):質(zhì)量評(píng)估 出處:《西安工程大學(xué)》2016年碩士論文
【摘要】:指紋身份驗(yàn)證方式具有便捷、唯一等可作為密碼的天然特性。考勤記錄、社保管理、門禁安全、車鎖密碼等指紋識(shí)別應(yīng)用遍布各個(gè)領(lǐng)域。然而,由于計(jì)算機(jī)技術(shù)的各種弊端、傳統(tǒng)指紋算法的安全漏洞等不利因素的影響,基于指紋身份安全認(rèn)證的系統(tǒng)應(yīng)用在金融、海關(guān)、軍隊(duì)等關(guān)系國(guó)家機(jī)密的、要求等級(jí)較高的、信息保密性較強(qiáng)的領(lǐng)域中,依然存在一些安全問(wèn)題與應(yīng)用問(wèn)題。本課題針對(duì)特殊領(lǐng)域的指紋識(shí)別系統(tǒng)進(jìn)行研究,對(duì)于軍隊(duì)、銀行中的安全管理系統(tǒng)的穩(wěn)定運(yùn)行與快速發(fā)展影響深遠(yuǎn)。在了解當(dāng)前指紋算法以及指紋應(yīng)用的研究現(xiàn)狀的基礎(chǔ)上,對(duì)指紋識(shí)別算法學(xué)習(xí)研究和實(shí)驗(yàn)測(cè)試的數(shù)據(jù)進(jìn)行深入的分析,找出其不足與缺陷,本文提出了克服其缺陷的算法,并結(jié)合金庫(kù)門禁特殊的安全管理控制要求,最終設(shè)計(jì)一套金庫(kù)門禁身份認(rèn)證系統(tǒng)方案,提高了金庫(kù)門管理的安全系數(shù)。主要研究?jī)?nèi)容包括:學(xué)習(xí)與研究當(dāng)前的指紋識(shí)別技術(shù)方法的理論知識(shí),對(duì)指紋識(shí)別應(yīng)用做進(jìn)一步分析;針對(duì)圖像質(zhì)量評(píng)估、增強(qiáng)等核心算法進(jìn)行不斷改進(jìn),具體體現(xiàn)在以下幾個(gè)主要方面。首先,對(duì)指紋進(jìn)行質(zhì)量評(píng)估分類方法進(jìn)行改進(jìn)。傳統(tǒng)方法主要是基于單一指標(biāo)從圖像的某一方面來(lái)判定其質(zhì)量等級(jí),有一定的局限性,不全面性。針對(duì)這點(diǎn),本文提出了全局信息與局部信息相互度量的多指標(biāo)質(zhì)量評(píng)估方法。該算法從不同的角度,采用不同的測(cè)量指標(biāo)衡量圖像的不同特性,綜合評(píng)估圖像質(zhì)量,提高了圖像質(zhì)量評(píng)估的準(zhǔn)確度。其次,在計(jì)算圖像像素頻率時(shí),本文給出了改進(jìn)的邊緣塊頻率的方法,實(shí)驗(yàn)證明該算法不僅能夠準(zhǔn)確地計(jì)算出紋理邊界處的頻率,而且改善了Gabor濾波對(duì)邊緣區(qū)域的增強(qiáng)效果,對(duì)后續(xù)特征點(diǎn)的完整提取奠定基石。再次,在指紋特征提取及匹配階段,文中比較了不同的算法,根據(jù)本課題的應(yīng)用場(chǎng)景,選用基于細(xì)化模板匹配法,準(zhǔn)確快速地提取了圖像特征點(diǎn),并采用基于細(xì)節(jié)點(diǎn)匹配方法來(lái)判斷兩幅圖像是否為同一指紋。最后,結(jié)合金庫(kù)門禁安全級(jí)數(shù)較高的要求,將質(zhì)量評(píng)估、增強(qiáng)匹配、報(bào)警系統(tǒng)等各個(gè)加強(qiáng)安全級(jí)數(shù)的模塊聯(lián)合,設(shè)計(jì)了金庫(kù)門禁指紋識(shí)別系統(tǒng)。測(cè)試表明,該系統(tǒng)不但運(yùn)行穩(wěn)定,而且提高了安全系數(shù),加強(qiáng)了信息保密性。通過(guò)驗(yàn)證,本文的金庫(kù)門禁指紋識(shí)別系統(tǒng)算法準(zhǔn)確度高,穩(wěn)定度高,可以對(duì)指紋圖像進(jìn)行準(zhǔn)確的質(zhì)量分類、識(shí)別匹配,實(shí)現(xiàn)了工作人員身份的準(zhǔn)確驗(yàn)證,為金庫(kù)門安全管理提供有力的保障。
[Abstract]:Fingerprint authentication method is convenient, unique and can be used as the natural characteristic of password. Attendance record, social security management, entrance security, car lock password and other fingerprint identification are widely used in various fields. However, due to the shortcomings of computer technology, Because of the negative factors such as the security loophole of traditional fingerprint algorithm, the system based on fingerprint identity security authentication is applied in the fields such as finance, customs, military and other fields which are related to state secrets, require higher level, and have strong information confidentiality. There are still some security problems and application problems. The stable operation and rapid development of the security management system in the bank have far-reaching influence. On the basis of understanding the current situation of fingerprint algorithm and fingerprint application, the study of fingerprint identification algorithm and the data of experimental test are deeply analyzed. To find out its shortcomings and defects, this paper puts forward an algorithm to overcome the defects, and finally designs a set of access guard identity authentication system scheme, combining with the special security management and control requirements of the vault access control. The safety factor of treasury door management is improved. The main research contents include: studying and studying the theoretical knowledge of current fingerprint identification technology, further analyzing the application of fingerprint identification, and aiming at image quality evaluation, The core algorithms, such as enhancement, are continuously improved in the following main aspects. First of all, The traditional method is mainly based on a single index to judge the quality grade of the fingerprint from one aspect of the image. It has some limitations and is not comprehensive. In this paper, a multi-index quality evaluation method for measuring global and local information is proposed. The algorithm uses different measurement indexes to measure the different characteristics of the image from different angles and synthetically evaluates the image quality. The accuracy of image quality evaluation is improved. Secondly, when calculating the pixel frequency of the image, this paper presents an improved method of edge block frequency, which is proved by experiments that the algorithm can not only accurately calculate the frequency at the edge of the texture. Moreover, the enhancement effect of Gabor filter on edge region is improved, which lays the foundation for the complete extraction of subsequent feature points. Thirdly, in the phase of fingerprint feature extraction and matching, different algorithms are compared, according to the application scene of this subject, Based on the thinning template matching method, the feature points of the image are extracted accurately and quickly, and the minutia-based matching method is used to judge whether the two images are the same fingerprint. By combining the modules of quality assessment, enhanced matching, alarm system and so on, the paper designs a fingerprint identification system for access control in vaults. The test results show that the system not only runs stably, but also improves the safety coefficient. Through the verification, the algorithm of this paper has high accuracy and high stability, it can classify the fingerprint image accurately, identify and match the fingerprint image, and realize the accurate verification of the identity of the staff. For the Treasury door security management to provide effective protection.
【學(xué)位授予單位】:西安工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)重要報(bào)紙文章 前6條
1 小雅;金庫(kù)門禁 門鎖璧合[N];金融時(shí)報(bào);2000年
2 孫海峰;商標(biāo)敲開(kāi)金庫(kù)門[N];中國(guó)工商報(bào);2011年
3 劉坤赤;銀行必須走出金庫(kù)安全誤區(qū)[N];今日信息報(bào);2007年
4 本報(bào)記者 賈力軍;看“警鷹”的鯤鵬本色[N];發(fā)展導(dǎo)報(bào);2001年
5 陳向民;淺談儲(chǔ)蓄對(duì)外服務(wù)的應(yīng)急預(yù)案[N];中國(guó)郵政報(bào);2007年
6 本報(bào)記者 原建猛;山西:銀行保險(xiǎn)箱少人問(wèn)津[N];發(fā)展導(dǎo)報(bào);2005年
相關(guān)碩士學(xué)位論文 前1條
1 牛飛婷;金庫(kù)門禁指紋識(shí)別系統(tǒng)算法研究[D];西安工程大學(xué);2016年
,本文編號(hào):1656892
本文鏈接:http://sikaile.net/shekelunwen/shehuibaozhanglunwen/1656892.html
最近更新
教材專著