北京市適應(yīng)氣候變化信息建模研究
本文關(guān)鍵詞: 敏感性分析 決策支持系統(tǒng) 計(jì)量經(jīng)濟(jì)模型 氣象因素 嶺回歸 出處:《北京林業(yè)大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:本文主要研究了北京市行業(yè)經(jīng)濟(jì)對(duì)氣象條件變化的敏感性,并構(gòu)建了一個(gè)以模型庫(kù)、數(shù)據(jù)庫(kù)、知識(shí)庫(kù)為主要內(nèi)容的北京市適應(yīng)氣候變化決策支持系統(tǒng)。對(duì)于敏感性分析內(nèi)容,利用12年(2002-2013)經(jīng)濟(jì)和氣象的歷史數(shù)據(jù),分析了北京市各行業(yè)經(jīng)濟(jì)產(chǎn)出對(duì)氣象因素變化的敏感性。通過(guò)改進(jìn)Cobb-Douglas (C-D)生產(chǎn)函數(shù)這一計(jì)量經(jīng)濟(jì)模型,建立了氣象因素變化和行業(yè)經(jīng)濟(jì)產(chǎn)出之間的數(shù)量因果關(guān)系;采用嶺回歸模型對(duì)北京的行業(yè)經(jīng)濟(jì)-氣象系統(tǒng)要素進(jìn)行敏感性分析,得到了北京地區(qū)各行業(yè)對(duì)氣象條件的敏感性排名。其中,建筑業(yè)、批發(fā)零售業(yè)和金融業(yè)對(duì)氣象條件變化表現(xiàn)出高敏感性,而農(nóng)業(yè)對(duì)氣象條件變化的敏感性最低;從高到低依次為:建筑業(yè)(0.4995)、批發(fā)與零售業(yè)(0.4176)、金融業(yè)(0.2933)、交通運(yùn)輸倉(cāng)儲(chǔ)和郵政業(yè)(0.2806)、工業(yè)(0.2799)、住宿和餐飲業(yè)(0.2710)、衛(wèi)生與社會(huì)保障和社會(huì)福利業(yè)(0.2691)、文化體育和娛樂(lè)業(yè)(0.2607)、農(nóng)業(yè)(0.2537)。通過(guò)分析行業(yè)經(jīng)濟(jì)對(duì)氣象因素變化的敏感性,有利于北京政府理解這些影響并科學(xué)地進(jìn)行產(chǎn)業(yè)結(jié)構(gòu)調(diào)整和資源格局優(yōu)化。研究結(jié)果表明,嶺回歸獲得的結(jié)果更加符合北京地區(qū)行業(yè)經(jīng)濟(jì)發(fā)展的實(shí)際情況。北京市適應(yīng)氣候變化決策支持系統(tǒng)中包含了北京市常見(jiàn)災(zāi)害預(yù)測(cè)預(yù)警模型庫(kù)、敏捷性分析的數(shù)據(jù)庫(kù)、適應(yīng)氣候變化的知識(shí)庫(kù)。將Bootstrap前端框架、Laravel后臺(tái)框架、數(shù)據(jù)可視化開(kāi)源方案共同應(yīng)用到?jīng)Q策分析系統(tǒng)架構(gòu)中,達(dá)到優(yōu)化系統(tǒng)結(jié)構(gòu)和增強(qiáng)用戶體驗(yàn)的目的。
[Abstract]:This paper mainly studies the sensitivity of the industry economy of Beijing to the change of meteorological conditions, and constructs a decision support system for climate change adaptation in Beijing, which takes model base, database and knowledge base as the main contents. Based on the historical data of economy and meteorology from 12 years to 2002-2013, the sensitivity of economic output of various industries in Beijing to the change of meteorological factors is analyzed. By improving the econometric model of Cobb-Douglas C-D production function, The quantitative causality between meteorological factors and industry economic output is established, and the sensitivity analysis of industry economic-meteorological system elements in Beijing is carried out by using ridge regression model. The sensitivities of various industries to meteorological conditions in Beijing are obtained. Among them, construction, wholesale, retail and financial sectors are highly sensitive to changes in meteorological conditions, while agriculture is the least sensitive to changes in meteorological conditions. The order from high to low is: construction industry 0.4995, wholesale and retail trade 0.4176, finance 0.2933, transportation, storage and post office 0.2806, industry 0.2799 999, accommodation and catering 0.2710, health and social security and social welfare 0.2691, cultural, sports and entertainment 0.2607, agriculture 0.25377.The order is as follows: construction industry 0.4995, wholesale and retail trade 0.4176, finance 0.2933, transportation, storage and post office 0.2806, industry 0.2799 9, accommodation and catering 0.2710, health and social security and social welfare 0.2691, cultural, sports and entertainment 0.2607, agriculture 0.2537. By analyzing the sensitivity of the industry economy to changes in meteorological factors, It is helpful for the Beijing government to understand these influences and to scientifically adjust the industrial structure and optimize the resource pattern. The results obtained by Ling regression are more in line with the actual situation of the economic development of the industry in Beijing. The decision support system for climate change adaptation in Beijing contains a model base for forecasting and early warning of common disasters in Beijing, a database for agility analysis, The Bootstrap front-end framework and the data visualization open source scheme are applied to the decision analysis system architecture to optimize the system structure and enhance the user experience.
【學(xué)位授予單位】:北京林業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:F127;P467
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉志遠(yuǎn);楊t-;閻光偉;;基于ECharts-X的安全事故數(shù)據(jù)三維可視化系統(tǒng)[J];中國(guó)科技信息;2015年23期
2 孫秋年;饒?jiān)?;基于關(guān)聯(lián)分析的網(wǎng)絡(luò)數(shù)據(jù)可視化技術(shù)研究綜述[J];計(jì)算機(jī)科學(xué);2015年S1期
3 張明順;王義臣;;北京市高溫?zé)崂舜嗳跣栽u(píng)價(jià)[J];城市與環(huán)境研究;2015年01期
4 談華宇;吳昶成;邱小平;;基于Bootstrap框架的動(dòng)態(tài)表單設(shè)計(jì)與實(shí)現(xiàn)[J];無(wú)線互聯(lián)科技;2015年03期
5 許嘉龍;;對(duì)促進(jìn)北京未來(lái)經(jīng)濟(jì)發(fā)展方向的分析與建議[J];財(cái)經(jīng)界(學(xué)術(shù)版);2015年03期
6 吳軍;馬瑜;;北京金融業(yè)發(fā)展分析[J];前線;2015年02期
7 張青;陶彩霞;陳,
本文編號(hào):1528072
本文鏈接:http://sikaile.net/shekelunwen/shehuibaozhanglunwen/1528072.html