溶膠凝膠法制備磷酸鐵鋰復(fù)合材料及其微結(jié)構(gòu)與磁性能研究
[Abstract]:Lithium-ion battery cathode material olivine phosphate lithium-ion has the characteristics of no pollution to the environment, low price, rich source of raw materials, high specific energy and high safety performance. It is one of the most potential cathode materials for lithium ion batteries. However, the lithium ion battery positive material peridotite type LiFePO4 has shortcomings. The first is its accumulation density. In this way, the volume is lower than the capacity, and the volume of the battery is relatively large. Second is the ion diffusion coefficient and the low conductivity. The conductivity kappa of the material is related to the hole type polaron. The spin of the hole in the olivine type iron phosphate is related to the 2 electronic structure of the Fe3+ (TG) 3 (eg). The two valence iron cation (Fe2+), with the electronic structure of (tgT) 3 (egT) 2tg, produces ferromagnetic coupling through the double exchange mechanism, so the loss of electrons will cause the distortion of the polar subtype, and the spin polarized charge cloud will be produced. This paper uses the simple operation, the synthesis conditions easy to control, and the preparation of the sol-gel method (sol-gel), which is characterized by small particle size and so on. The lithium iron phosphate composite material was prepared by a step method, and the metal single copper and phosphite lithium carbon composites were prepared by two steps, and the AxOy metal oxides (manganese dioxide, three oxide two aluminum) and olivine type lithium carbon composites were synthesized by two steps and the synthesis process of the composites was heated by TG, XRD, FTIR, SEM, and VSM. Characteristics, phase structure, functional group and chemical bond, microsurface morphology and magnetic properties are studied. The main research results and innovation points are as follows: 1. the effects of different carbon sources on the lithium phosphate composites were studied, and five different carbon sources (ethylene glycol, polyethylene glycol 4000, polyvinyl alcohol PVA-124, monohydrate citric acid and Portuguese) were used. LiFePO4/C composite material.XRD study by sol-gel method (sol-gel) showed that the samples were all peridotite phase lithium iron phosphate.SEM test showed that the sample with ethylene glycol as carbon source was porous structure, and the sample particles with glucose as carbon source were larger, the size of 40 micron.VSM study showed that polyvinyl alcohol (PVA-124) as carbon on the one hand The relative saturation magnetization of the source samples is the largest, the size is 2.01 emu/g. On the other hand, the sample with ethylene glycol as carbon source has the greatest coercivity, and its value is 170.67 Oe.2. to study the effect of copper (Cu) on the lithium phosphate composite material. The two step method is used to synthesize copper and phosphate lithium phosphate composites with different mass ratio, and TG, XRD, FTIR, SEM and VSM are used. Methods the thermal properties, phase structure, functional group and chemical bond, micro surface morphology and magnetic properties of copper and lithium iron phosphate composites were studied. The results show that composite materials may begin to be synthesized after heating up to about 400 degrees C. The phase structure analysis of the composite material appears obvious lithium and copper phosphate. The micromorphology SEM analysis shows that the particle size of the composite is obvious and the dispersion is better. The particle size is mainly 400 nm. at room temperature and the hysteresis loop shows that the introduction of copper monomer makes the composite material Ms (emu/g), Mr (emu/g) and Area of hysteresis loop (kOe emu/g) have a slight decreasing trend. The effect of manganese dioxide on the lithium iron phosphate composite was studied. By two step method, the composite of manganese dioxide and lithium iron phosphate with different mass ratio was synthesized and the thermal properties, phase structure, functional group and chemical bond, micro surface morphology and surface morphology of manganese dioxide and lithium iron phosphate composites were prepared by means of TG, XRD, FTIR, SEM and VSM. The magnetic properties are studied. It is shown that composite materials may begin to be synthesized after heating up to 400 degrees C. The phase structure analysis of the composites appears to be the main peak type of lithium iron phosphate and manganese dioxide, and there is no obvious impurity peak type. Micromorphology SEM analysis shows that the composite has obvious particle size, good dispersibility and main particle size. To test the hysteresis loop at room temperature for 168 nm., the introduction of manganese dioxide makes the Ms (emu/g), Mr (emu/g) and Area of hysteresis loop (kOe. Emu/g) of the composite substantially increase with the increase of manganese dioxide and increase the effect of the three oxidation of two aluminum on the lithium phosphate composite material, and the synthesis of different mass ratios by the two step method. The thermal properties, phase structure, functional group and chemical bond, microsurface morphology and magnetic properties of the samples of Al203 and lithium iron phosphate composites are studied by means of A1203 and TG, XRD, FTIR, SEM and VSM. The results show that composite materials may begin to be synthesized after heating up to 450 degrees C. The main peak type of lithium iron phosphate and Al2O3 was found in the phase structure analysis of the composites, and no impurity peaks were found. Micromorphology SEM analysis showed that the composites were granular and dispersed well. The size of the particles was 350 nm. at room temperature and the hysteresis loop showed that the introduction of three oxidation two aluminum made the composite Ms (emu/g), Mr (emu/g) and the composite material. There are slight changes in Area of hysteresis loop (kOe. Emu/g).
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33;TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;一種用于鋰離子電池正極材料磷酸鐵鋰的制備方法[J];電子元件與材料;2010年04期
2 ;新疆理化所鋰離子電池正極材料磷酸鐵鋰的研制獲進(jìn)展[J];人工晶體學(xué)報;2011年02期
3 羅西佳;肖仁貴;曹建新;廖霞;;介質(zhì)對磷酸鐵結(jié)晶影響研究[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2011年06期
4 葛權(quán);雷曉玲;曹益榮;榮東霞;文曉剛;;磷酸鐵鋰微球制備及其電化學(xué)性能研究[J];功能材料;2012年13期
5 龐亞芳;肖仁貴;李宜芳;廖霞;;新型磷酸鐵-磷酸鐵鋰均相混合結(jié)晶物的制備[J];電源技術(shù);2013年07期
6 童暉;王世剛;黃紹明;李愛成;陳國紅;唐超房;;磷酸鐵鋰材料連續(xù)式制備中的氣氛凈化技術(shù)研究[J];電子工業(yè)專用設(shè)備;2007年01期
7 許寒;郭西鳳;?±;;鋰離子電池正極材料磷酸鐵鋰研究現(xiàn)狀[J];無機(jī)鹽工業(yè);2009年03期
8 羅成果;劉海霞;;鋰離子電池正極材料磷酸鐵鋰行業(yè)研究[J];河南化工;2009年09期
9 周文彩;李金洪;姜曉謙;;磷酸鐵鋰制備工藝及研究進(jìn)展[J];硅酸鹽通報;2010年01期
10 單玉香;王群才;孟慶臻;;鋰離子電池正極材料磷酸鐵鋰的研究進(jìn)展[J];化工科技;2010年03期
相關(guān)會議論文 前10條
1 謝輝;;摻雜金屬離子對磷酸鐵鋰結(jié)構(gòu)及性能的影響[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
2 李新麗;周輝;丁倩倩;王偉東;仇衛(wèi)華;;納米級磷酸鐵制備倍率型磷酸亞鐵鋰的方法和性能研究[A];第30屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2013年
3 金慧芬;王鵬;高俊奎;劉震;;商業(yè)化磷酸鐵鋰材料循環(huán)差異性研究[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
4 常照榮;劉瑤;湯宏偉;趙海麗;黃靜;;鋰離子電池正極材料磷酸鐵鋰的液相合成及其電化學(xué)性能研究[A];河南省化學(xué)會2010年學(xué)術(shù)年會論文摘要集[C];2010年
5 胡博洋;陶國華;;磷酸鐵鋰微觀結(jié)構(gòu)與鋰離子擴(kuò)散動力學(xué)研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第19分會:化學(xué)信息學(xué)與化學(xué)計量學(xué)[C];2014年
6 張樹濤;歐秀芹;王麗;;飽和空氣暴露對水熱法制備的磷酸鐵鋰的影響[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
7 張俊喜;許明玉;顏立成;楊希;周同;顧志浩;;鋰離子電池正極材料磷酸鐵鋰的釩摻雜改性研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第6分冊)[C];2010年
8 謝輝;黃昆;周震濤;;錳摻雜磷酸鐵鋰正極材料的合成及電性能研究[A];第十三次全國電化學(xué)會議論文摘要集(上集)[C];2005年
9 邱瑞玲;唐致遠(yuǎn);焦延峰;于非;;鋰離子電池正極材料磷酸鐵鋰[A];第二十七屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2006年
10 劉金龍;何平;夏永姚;;磷酸鐵鋰在水溶液中的循環(huán)穩(wěn)定性研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
相關(guān)重要報紙文章 前10條
1 本報記者 胡Z,
本文編號:2129303
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/2129303.html