Z-型Rabin樹理論的可判定性
發(fā)布時(shí)間:2019-05-06 18:53
【摘要】:Z-型Rabin樹是Rabin樹的一種變體,它們與Rabin樹的主要區(qū)別在于不要求樹根的存在,而只限制其中的極大枝與整數(shù)上的序同構(gòu)。本文通過歸約的方法證明,Z-型Rabin樹的一目二階理論是可判定的。
[Abstract]:Z-type Rabin tree is a variant of Rabin tree. The main difference between Z-type tree and Rabin tree is that they do not require the existence of tree roots, but only restrict the order isomorphism of maximal branches and integers. In this paper, we prove that the second-order theory of Z-type Rabin tree is determinable by the method of reduction.
【作者單位】: 中國人民大學(xué)哲學(xué)院;
【分類號(hào)】:B81
,
本文編號(hào):2470407
[Abstract]:Z-type Rabin tree is a variant of Rabin tree. The main difference between Z-type tree and Rabin tree is that they do not require the existence of tree roots, but only restrict the order isomorphism of maximal branches and integers. In this paper, we prove that the second-order theory of Z-type Rabin tree is determinable by the method of reduction.
【作者單位】: 中國人民大學(xué)哲學(xué)院;
【分類號(hào)】:B81
,
本文編號(hào):2470407
本文鏈接:http://sikaile.net/shekelunwen/ljx/2470407.html
最近更新
教材專著