幾個(gè)三值命題邏輯系統(tǒng)中命題真度的分布
發(fā)布時(shí)間:2018-05-04 22:02
本文選題:數(shù)理邏輯 + 真度; 參考:《陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》2005年04期
【摘要】:利用勢(shì)為3的均勻概率空間的無窮乘積在W3、G3、Π3及S3系統(tǒng)中引入了公式的真度概念,得到了命題真度分布的一些性質(zhì),同時(shí)給出了三值真度推理規(guī)則.證明了以上各系統(tǒng)中的全體公式的真度值之集在[0,1]上是稠密的,并給出了其中公式真度的表達(dá)通式,即若A∈F(S),則τ(A)=3kn(n=1,2,…,k=0,1,…,3n).此項(xiàng)研究為進(jìn)一步建立三值命題邏輯的近似推理理論奠定了基礎(chǔ),并且使W3,G3,Π3及S3系統(tǒng)中公式的真度有了統(tǒng)一的理論體系.
[Abstract]:By using the infinite product of uniform probabilistic space with potential of 3, the concept of true degree of formula is introduced in W _ 3N _ 3G _ 3i _ 3 and S _ 3 systems, and some properties of propositional trueness distribution are obtained. At the same time, the inference rules of ternary truth degree are given. It is proved that the set of true degree values of all formulas in the above systems is dense on [0 ~ 1], and the general expression of the true degree of formula is given, that is, if A 鈭,
本文編號(hào):1844844
本文鏈接:http://sikaile.net/shekelunwen/ljx/1844844.html
最近更新
教材專著