天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 社科論文 > 考古論文 >

基于改進(jìn)Elman神經(jīng)網(wǎng)絡(luò)的徽派古建筑壽命預(yù)測

發(fā)布時間:2018-04-14 00:32

  本文選題:Elman神經(jīng)網(wǎng)絡(luò) + 粒子群 ; 參考:《中國科學(xué)技術(shù)大學(xué)學(xué)報》2017年10期


【摘要】:徽派建筑是我國四大古建筑流派之一,木構(gòu)件是徽派建筑的核心.準(zhǔn)確預(yù)測徽派木構(gòu)件的壽命,對于古建筑的保護具有重要的意義.目前系統(tǒng)考慮多種因素對木構(gòu)件壽命共同影響的研究較少,Elman神經(jīng)網(wǎng)絡(luò)是一種典型的多層動態(tài)遞歸神經(jīng)網(wǎng)絡(luò),通過存儲內(nèi)部狀態(tài)使其具備映射動態(tài)特性的功能,從而使系統(tǒng)具有適應(yīng)時變特性的能力,可用于預(yù)測木構(gòu)件復(fù)雜的非線性時變系統(tǒng)的建模.針對基本的Elman神經(jīng)網(wǎng)絡(luò)存在訓(xùn)練速度慢、容易陷入局部極小值的特點,使用帶有自適應(yīng)變異算子的粒子群優(yōu)化算法對基本的Elman神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn),優(yōu)化網(wǎng)絡(luò)中各層之間的連接權(quán)值,提高學(xué)習(xí)速度,并在全局范圍內(nèi)尋找最優(yōu)解.仿真結(jié)果表明,改進(jìn)后的網(wǎng)絡(luò)能較準(zhǔn)確地擬合訓(xùn)練值,并進(jìn)行有效預(yù)測,能夠較好應(yīng)用于徽派古建筑壽命預(yù)測.
[Abstract]:Huizhou architecture is one of the four ancient architectural schools in China, and wooden components are the core of Huizhou architecture.It is of great significance for the protection of ancient buildings to accurately predict the life of Huizhou wooden components.At present, there are few researches on the influence of many factors on the life of wood components. Elman neural network is a typical multi-layer dynamic recurrent neural network, which can map dynamic characteristics by storing internal states.Thus, the system has the ability to adapt to the time-varying characteristics and can be used to predict the modeling of complex nonlinear time-varying systems with wood components.The basic Elman neural network has the characteristics of slow training speed and easy to fall into local minimum. The particle swarm optimization algorithm with adaptive mutation operator is used to improve the basic Elman neural network.The connection weights of each layer in the network are optimized, the learning speed is improved, and the optimal solution is found in the global scope.The simulation results show that the improved network can fit the training value accurately and predict effectively, and it can be applied to the prediction of the life of Huizhou ancient buildings.
【作者單位】: 安徽建筑大學(xué)電子與信息工程學(xué)院;安徽建筑大學(xué)機械與電氣工程學(xué)院;
【基金】:十二五國家科技支撐計劃(2012BAJ08B00) 安徽質(zhì)量工程項目(2014zdjy091) 安徽建筑大學(xué)博士啟動基金 易海人才工程資助
【分類號】:K879.1;TP183
,

本文編號:1746936

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shekelunwen/kgx/1746936.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6c58f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com