天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

Develop New of Efficient Catalysts for Hydrodesulphurization

發(fā)布時間:2022-11-11 22:37
  Hydrodesulphurisation is an important part of the hydrotreating process. More stringent regulations on the quality of fuels bring new requirements to the catalytic processes. The removal of sulphur has become a key issue in the oil refining and this work aims to address several aspects of the process.Current hydrotreatment catalysts are unable to effectively remove theses impurities in sufficient quantities to meet government regulation. The goal of this research is to develop more effective hyd... 

【文章頁數(shù)】:102 頁

【學(xué)位級別】:碩士

【文章目錄】:
ABSTRACT
CHAPTER 1 LITERATURE REVIEW
    1.1 Introduction
        1.1.1 Hydrotreating of Refinery Streams
        1.1.2 Different S-compounds Encountered in HDS
        1.1.3 S-compounds in Refinery Streams
        1.1.4 Reaction Pathway of Model Compound Thiophene (Ts)
        1.1.5 Conventional HDS
        1.1.6 The S-compounds in Diesel Oil Fractions:Nature and Reactivity
        1.1.7 The Mechanism of HDS
    1.2 IMPORTANCE OF HDS
    1.3 CLASSIFICATION OF DESULFURIZATION TECHNOLOGIES
    1.4 STATE OF ART FOR CATALYTIC AND ALTERNATIVE HDS PROCESSES
    1.5 DIFFERENT CATALYSTS
        1.5.1 Structure of the Oxide Catalyst
        1.5.2 Structure of the Sulfide Catalyst
        1.5.3 Review of Catalysts
        1.5.4 Comparison of CoMo/Al_2O_3 with NiMo/Al_2O_3 for HDS of 4,6-DMDBT
    1.6 AIM OF THE WORK
CHAPTER 2 EXPERIMENTAL METHOD
    2.1 MATERIALS USED
    2.2 CATALYST CHARACTERIZATION TECHNIQUES
        2.2.1 Thermogravimetric Analysis (TGA)
        2.2.2 Surface Area and Porosity Analysis
        2.2.3 Powder X-ray Diffraction
        2.2.4 Scanning Electron Microscopy (SEM)
    2.3 HDS ACTIVITY MEASUREMENT
        2.3.1 Reaction Studies
            2.3.1.1 The Advantages of Microactivity-Reference Units
            2.3.1.2 The Disadvantages of Microactivity-Reference Units
            2.3.1.3 Calibration of Hydrogen Gas
            2.3.1.4 Calibration of Ts
        2.3.2 Set-up of Gas Chromatography (GC)
            2.3.2.1 GC Calibration of Ts
        2.3.3 Set-up of Total Sulphur Analyser
            2.3.3.1 Total Sulphur Analyser Calibration
CHAPTER 3 PREPARATION AND CHARACTERIZATION OF CATALYST
    3.1 PREPARATION OF CATALYSTS
        3.1.1 Preparation NiMo/γ-Al_2O_3 Supported Catalyst
        3.1.2. Preparation RuNiMo/γ-Al_2O_3 Supported Catalyst
        3.1.3 Preparation LaNiMo/γ-Al_2O_3 Supported Catalyst
        3.1.4 Preparation CeNiMo/γ-Al_2O_3 Supported Catalyst
    3.2 CATALYST CHARACTERIZATION
        3.2.1 Thermogravimetric Analysis(TGA)
        3.2.2 Surface Area and Porosity Studies
            3.2.2.1 BET of the Catalyst NiMo/γ-Al_2O_3
            3.2.2.2 BET of the Catalyst RuNiMo/γ-Al_2O_3
            3.2.2.3 BET of the Catalyst LaNiMo/γ-Al_2O_3
            3.2.2.4 BET of the Catalyst CeNiMo/γ-Al_2O_3
        3.2.3 Powder X-ray Diffraction
        3.2.4 Scanning Electron Microscopy(SEM)
            3.2.4.1 SEM of the Catalyst NiMo/γ-Al_2O_3
            3.2.4.2 SEM of the Catalyst RuNiMo/γ-Al_2O_3
            3.2.4.3 SEM of the Catalyst LaNiMo/γ-Al_2O_3
            3.2.4.4 SEM of the Catalyst CeNiMo/γ-Al_2O_3
CHAPTER 4 HDS EXPERIMENTS EVALUATION
    4.1 HDS oF TS OVER NIMo/Γ-AL_2O_3
    4.2 HDS OF TS OVER RUNIMO/Γ-AL_2O_3
    4.3 HDS OF TS OVER LANIMO/Γ-AL_2O_3
    4.4 HDS OF TS OVER CENIMO/Γ-AL_2O_3
    4.5 ACTIVITY OF THE CATALYSTS AT VARIABLE TEMPERATURES WITH THE TIME-ON-STREAM
        4.5.1 Activity of the Catalysts After 60 min of Time-on-Stream Under Variable Temperatures
            4.5.1.1 Activity of Catalyst(A)at Temperature 250℃
            4.5.1.2 Activity of Catalyst(A)at Temperature 300℃
            4.5.1.3 Activity of Catalyst(A)at Temperature 350℃
            4.5.1.4. Activity of Catalyst(B)at Temperature 250℃
            4.5.1.5 Activity of Catalyst(B)at Temperature 300℃
            4.5.1.6 Activity of Catalyst(B)at Temperature 350℃
            4.5.1.7 Activity of Catalyst(C)at Temperature 250℃
            4.5.1.8 Activity ofCatalyst(C)at Temperature 300℃
            4.5.1.9 Activity of Catalyst(C)at Temperature 350℃
            4.5.1.10 Activity of Catalyst(D)at Temperature 250℃
            4.5.1.11 Activity of Catalyst(D)at Temperature 300℃
            4.5.1.12 Activity of Catalyst(D)at Temperature 350℃
        4.5.2 Activity of the Catalysts After 120 min of Time-on-Stream Under Variable Temperatures
            4.5.2.1 Activity of Catalyst(A)at Temperature 250℃
            4.5.2.2 Activity of Catalyst(A)at Temperature 300℃
            4.5.2.3 Activity of Catalyst(A)at Temperature 350℃
            4.5.2.4 Activity of Catalyst(B)at Temperature 250℃
            4.5.2.5 Activity of Catalyst(B)at Temperature 300℃
            4.5.2.6 Activity of Catalyst(B)at Temperature 350℃
            4.5.2.7 Activity of Catalyst(C)at Temperature 250℃
            4.5.2.8 Activity of Catalyst(C)at Temperature 300℃
            4.5.2.9 Activity of Catalyst(C)at Temperature 350℃
            4.5.2.10 Activity of Catalyst(D)at Temperature 250℃
            4.5.2.11 Activity of Catalyst(D)at Temperature 300℃
            4.5.2.12 Activity of Catalyst(D)at Temperature 350℃
        4.5.3 Activity of the Catalysts After 180 min of Time-on-Stream Under Variable Temperatures
            4.5.3.1 Activity of Catalyst(A)at Temperature 250℃
            4.5.3.2 Activity of Catalyst(A)at Temperature 300℃
            4.5.3.3 Activity of Catalyst(A)at Temperature 350℃
            4.5.3.4 Activity of Catalyst(B)at Temperature 250℃
            4.5.3.5 Activity of Catalyst(B)at Temperature 300℃
            4.5.3.6 Activity of Catalyst(B)at Temperature 350℃
            4.5.3.7 Activity of Catalyst(C)at Temperature 250℃
            4.5.3.8 Activity of Catalyst(C)at Temperature 300℃
            4.5.3.9 Activity of Catalyst(C)at Temperature 350℃
            4.5.3.10 Activity of Catalyst(D)at Temperature 250℃
            4.5.3.11 Accivity of Catalyst(D)at Temperature 300℃
            4.5.3.12 Activity of Catalyst(D)at Temperature 350℃
        4.5.4 Activity of the Catalysts After 240 min of Time-on-Stream Under Variable Temperatures
            4.5.4.1 Activity of Catalyst(A)at Temperature 250℃
            4.5.4.2 Activity of Calalyst(A)at Temperature 300℃
            4.5.4.3 Activity of Catalyst(A)at Temperature 350℃
            4.5.4.4 Activity of Catalyst(B)at Temperature 250℃
            4.5.4.5 Activity of Catalyst(B)at Temperature 300℃
            4.5.4.6 Activity of Catalyst(B)at Temperature 350℃
            4.5.4.7 Activity of Catalyst(C)at Temperature 250℃
            4.5.4.8 Activity of Catalyst(C)at Temperature 300℃
            4.5.4.9 Activity of Catalyst(C)at Temperature 350℃
            4.5.4.10 Activity of Catalyst(D)at Temperature 250℃
            4.5.4.11 Activity of Catalyst(D)at Teperature 300℃
            4.5.4.12 Activity of Catalyst(D)at Temperature 350℃
    4.6 CONCLUSION
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
    5.1 CONCLUSION
    5.2 RECOMMENDATIONS
REFERENCES
ACKNOWLEDGEMENTS
北京化工大學(xué)碩士研究生學(xué)位論文答辯委員會決議書



本文編號:3705876

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/projectlw/hxgylw/3705876.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶932ed***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久福利视频在线观看| 国产传媒免费观看视频| 翘臀少妇成人一区二区| 九九热在线视频观看最新| 日韩一区二区三区免费av| 国产日韩在线一二三区| 视频在线播放你懂的一区| 伊人久久青草地综合婷婷| 国产亚洲欧美日韩国亚语| 欧美日韩无卡一区二区| 欧美二区视频在线观看| 亚洲精品国男人在线视频| 国产日韩欧美在线亚洲| 国产伦精品一区二区三区精品视频| 国产午夜免费在线视频| 久久本道综合色狠狠五月| 国内女人精品一区二区三区| 国产精品福利一级久久| 国产精品白丝久久av| 欧美日韩久久精品一区二区| 日本和亚洲的香蕉视频| 欧美一区日韩一区日韩一区| 91人人妻人人爽人人狠狠| 少妇毛片一区二区三区| 99在线视频精品免费播放| 99热中文字幕在线精品| 亚洲精品熟女国产多毛| 国产精品不卡高清在线观看| 国产亚洲精品岁国产微拍精品| 偷拍美女洗澡免费视频| 国产成人午夜av一区二区| 欧美午夜视频免费观看| 亚洲成人免费天堂诱惑| 国产成人人人97超碰熟女| 在线观看视频日韩精品| 五月婷婷六月丁香在线观看| 色播五月激情五月婷婷| 国产一区在线免费国产一区| 日韩欧美中文字幕av| 乱女午夜精品一区二区三区| 中文字幕人妻av不卡|