Effective Iridium Utilization on Combining with Non-noble Tr
發(fā)布時間:2020-12-20 03:30
當(dāng)今實現(xiàn)高速工業(yè)化的環(huán)保環(huán)境對當(dāng)代人來說是一個嚴(yán)峻挑戰(zhàn)。為了應(yīng)對快速增長的人口的能源需求,傳統(tǒng)資源被過渡利用,這些資源,如化石燃料,經(jīng)燃燒后釋放有害污染物到空氣中。由此產(chǎn)生的污染空氣進(jìn)入大氣,造成有害顆粒物和溫室氣體,并對居民造成嚴(yán)重的不利健康影響。因此,為了避免環(huán)境污染,需要努力減少對化石燃料的依賴并提高可再生能源的能量利用。從可再生能源中獲取能源主要集中在氫能源領(lǐng)域。氫能源是可持續(xù)能源,以環(huán)境友好方式提供未來的能源供應(yīng)和儲存需求。具有通過水電解槽和燃料電池分別應(yīng)對可再生能源的低能量和高能量發(fā)電期的能力。不幸的是,電解氫的產(chǎn)生受到陽極上緩慢的析氧反應(yīng)(OER)的抑制,析氧反應(yīng)是產(chǎn)生H2燃料的關(guān)鍵半反應(yīng)。OER是一種復(fù)雜的過程,電解水過程中,每釋放一個O2分子,則伴隨失去四個電子,這需要比標(biāo)準(zhǔn)析氧反應(yīng)電位(V=1.23v)高得多的電位。由于這種多余的能量在電化學(xué)過程中被消耗,同時也影響了可再生能源技術(shù)的廣泛應(yīng)用。目前,銥基氧化物,尤其是IrO2,是唯一能夠承受電催化制氫中苛刻酸性環(huán)境的材料。不幸的是,銥是非常珍貴的稀有元素;因此,如何有效利用銥仍然是一項挑戰(zhàn),因為它基本上降低了對化石燃...
【文章來源】:華東理工大學(xué)上海市 211工程院校 教育部直屬院校
【文章頁數(shù)】:127 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Chapter Ⅰ Introduction
1.1 Pollution from Burning of Fossil Fuels
1.2 Energy from Renewables
1.3 PEMWE's and Associated Challenges
1.4 Effective utilization of iridium
2"> 1.4.1 Doping IrO2
1.4.1.1 Ru based binary and ternary composites of rutile IrO2
1.4.1.2 Sn based binary and ternary composites of rutile IrO2
1.4.1.3 Doping of non-noble transition elements into IrO2
1.4.2 Iridium incorporation into different structures
1.4.2.1 Iridium in Pyrochlores
1.4.2.2 Iridium incorporation in Perovskites
1.4.3 Iridium based Mixed Oxides
2 based core-shell nanoparticles"> 1.4.3.1 IrO2 based core-shell nanoparticles
1.5 Innovations in current study
Chapter Ⅱ Experimental materials, methods, principles and characterization
2.1 Experimental materials and Synthesis methods
2.1.1 Chemical reagents, materials and instruments
2.1.2 Electrochemical characterization of electrodes
2.2 Methods and principles of electrochemical characterization
2.2.1 Reference Electrode Calibration
2.2.2 Test of solution resistance
2.2.3 Butler-Volmer (b-v) Equation of Electrode Dynamics
2.2.4 Cyclic voltammetry test
2.3 Physical characterization
2.3.1 X-Ray Powder Diffraction (XRD)
2.3.2 Scanning and Transmission electron microscopy(SEM &TEM)
2.3.3 Photoelectron spectroscopy (XPS)
2.3.4 Energy Dissipation Spectrum (EDS) and Inductively Coupled Plasma EmissionSpectroscopy (ICP-AES)
2.3.5 Specific Surface Area (BET)
2.3.6 X-ray fine structure spectrum (XAFS)
2 catalyst">Chapter Ⅲ Study on OER activity and structure of codoped IrO2 catalyst
3.1 Introduction
2 "> 3.2 Synthesis of codoped IrO2
3.3 Theoretical Calculation
3.4 Results and Discussion
2 "> 3.4.1 Composition, structure and morphological analysis of codoped IrO2
3.4.2 Computational Insight for codoped IrO2
3.4.3 Electrochemical Properties of codoped IrO2
3.4.4 XPS and XAS characterizations
3.5 Summary
Chapter Ⅳ Iridium Substitution in Nickel Cobaltite
4.1 Introduction
x NiCo2xOδ"> 4.2 Synthesis of IrxNiCo2xOδ
4.3 Results and Discussion
Ⅲ EXAFS"> 4.3.1 Structural characterization using XRD,TEM and Ir-LⅢ EXAFS
4.3.2 Electrocatalytic Activity and Durability
111 -edge XANES and XPS study"> 4.3.3 Electronic characterization of Iridium sites by Ir L111-edge XANES and XPS study
4.4 Summary
2 on 1-D Co3O4 Nano-rods as Mixed Oxides">Chapter Ⅴ Anchoring of IrO2 on 1-D Co3O4 Nano-rods as Mixed Oxides
5.1 Introduction
5.2 Material Synthesis
3 O4 nanorods"> 5.2.1 Synthesis of Co3O4 nanorods
2 decorated Co3O4 nanorods"> 5.2.2 Synthesis of IrO2 decorated Co3O4 nanorods
2 nanoparticles"> 5.2.3 Synthesis of IrO2 nanoparticles
5.3 Results and Discussion
5.3.1 XRD and EDS of Synthesized Composites
5.3.2 Morphological Analysis of Composites
5.3.3 OER Catalytic Evaluation of Composites
5.3.4 One Dimensional Importance of Substrate Material
5.3.5 XPS Analysis of Synthesized Composites
5.4 Summary
Chapter Ⅵ Conclusion and Future Stance
6.1 Schematic Conclusion
6.2 Prospect
References
Published Work during PhD
Acknowledgement
本文編號:2927126
【文章來源】:華東理工大學(xué)上海市 211工程院校 教育部直屬院校
【文章頁數(shù)】:127 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
Chapter Ⅰ Introduction
1.1 Pollution from Burning of Fossil Fuels
1.2 Energy from Renewables
1.3 PEMWE's and Associated Challenges
1.4 Effective utilization of iridium
2"> 1.4.1 Doping IrO2
1.4.2.1 Iridium in Pyrochlores
1.4.2.2 Iridium incorporation in Perovskites
1.4.3 Iridium based Mixed Oxides
2
1.5 Innovations in current study
Chapter Ⅱ Experimental materials, methods, principles and characterization
2.1 Experimental materials and Synthesis methods
2.1.1 Chemical reagents, materials and instruments
2.1.2 Electrochemical characterization of electrodes
2.2 Methods and principles of electrochemical characterization
2.2.1 Reference Electrode Calibration
2.2.2 Test of solution resistance
2.2.3 Butler-Volmer (b-v) Equation of Electrode Dynamics
2.2.4 Cyclic voltammetry test
2.3 Physical characterization
2.3.1 X-Ray Powder Diffraction (XRD)
2.3.2 Scanning and Transmission electron microscopy(SEM &TEM)
2.3.3 Photoelectron spectroscopy (XPS)
2.3.4 Energy Dissipation Spectrum (EDS) and Inductively Coupled Plasma EmissionSpectroscopy (ICP-AES)
2.3.5 Specific Surface Area (BET)
2.3.6 X-ray fine structure spectrum (XAFS)
2
3.1 Introduction
2
3.4 Results and Discussion
2
3.5 Summary
Chapter Ⅳ Iridium Substitution in Nickel Cobaltite
4.1 Introduction
x
Ⅲ
4.3.2 Electrocatalytic Activity and Durability
111
4.4 Summary
2
5.1 Introduction
5.2 Material Synthesis
3
2 decorated Co3O4 nanorods"> 5.2.2 Synthesis of IrO2 decorated Co3O4 nanorods
2 nanoparticles"> 5.2.3 Synthesis of IrO2 nanoparticles
5.3 Results and Discussion
5.3.1 XRD and EDS of Synthesized Composites
5.3.2 Morphological Analysis of Composites
5.3.3 OER Catalytic Evaluation of Composites
5.3.4 One Dimensional Importance of Substrate Material
5.3.5 XPS Analysis of Synthesized Composites
5.4 Summary
Chapter Ⅵ Conclusion and Future Stance
6.1 Schematic Conclusion
6.2 Prospect
References
Published Work during PhD
Acknowledgement
本文編號:2927126
本文鏈接:http://sikaile.net/projectlw/hxgylw/2927126.html
最近更新
教材專著