以植物、細(xì)菌和有機(jī)配體合成的銀納米顆粒(新型的友好的害蟲防控技術(shù))的表征和生物毒性
發(fā)布時間:2024-04-08 20:16
納米技術(shù)在跨學(xué)科交叉研究是個有前途的研究領(lǐng)域。它在殺蟲劑、制藥、電子工業(yè)和農(nóng)業(yè)均有涉及。納米技術(shù)具有很強的應(yīng)用前景且很有價值;跉⑾x劑、農(nóng)藥和昆蟲驅(qū)避劑的納米技術(shù)在害蟲控制取得了很大的進(jìn)展。傳統(tǒng)的防治手段在農(nóng)業(yè)上防治害蟲是不合理,它們的使用除了降低土壤肥力還對動物和人類造成不利的影響。納米技術(shù)能提供綠色有效的方案控制農(nóng)業(yè)上的有害生物而不破壞環(huán)境。這種方案主要集中在害蟲管理的傳統(tǒng)策略和納米材料作為現(xiàn)代技術(shù)潛在的害蟲控制技術(shù)。節(jié)肢動物能取食植株影響其生長且傳播病毒病,此外,一些節(jié)肢動物通常攜帶致命的病原菌,這些病原菌能侵染人類和動物。其中,蚊子(雙翅目:蚊科),是多種病原菌的載體,威脅全世界人類的健康,如瘧疾、登革熱、黃熱病、乙型腦炎和絲蟲病。利用基于納米技術(shù)的非常規(guī)技術(shù)控制蚊蟲是當(dāng)前的大趨勢。我們提出了桂皮瘺果肉-銀納米顆粒作為創(chuàng)新性的有效的的技術(shù)控制蚊蟲。我們使用FT-IR,TEM,SEM,紫外-可見光度法和XRD對銀納米顆粒進(jìn)行表征。銀納米顆粒在24、48和72小時的處理后,對白紋伊蚊和淡色庫蚊Ⅰ齡-Ⅳ齡幼蟲和蛹具有很強的毒性效果。白紋伊蚊致死濃度LC50范圍為8.3 mg/L(Ⅰ...
【文章頁數(shù)】:146 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgement
Abstract
摘要
List of Abbreviation
Chapter 1 Introduction
Chapter 2 Literature Review
2.1. Nanotechnology: An Advanced Approach to the Development of Potent Insecticides
2.2. Mechanical Reduction of Particle Size
2.3. Plant-Based Synthesis of Silver Nanoparticles
2.4. Bacteria-mediated synthesis of AgNPs
2.4.1. Extracellular synthesis
2.4.2. Synthesis using culture supernatant
2.4.3. Synthesis using cell-free extract
2.5. Possible mechanisms
2.6. Agricultural pests and mosquito
2.6.1. Brown planthopper (Nilaparvata lugens)
2.6.2. Life History of Nilaparvata lugens
2.6.3. The economic importance for brown planthopper
2.7. Mosquitoes
2.7.1. Life History of mosquito
2.7.2. The economic importance of mosquitoes
Chapter 3 Controlling Aedes albopictus and Culex pipiens pallens using silvernanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode ofaction
3.2. Introduction
3.3. Materials and Methods
3.3.1. Chemicals and Plant materials
3.3.2. Preparation of plant fruit extract
3.3.3. Preliminary phytochemical testing
3.3.4. Synthesis of silver nanoparticles
3.3.5. Characterization of synthesized C. fistula/AgNPs
3.3.5.1. UV-Vis spectral analysis
3.3.5.2. FT-IR analysis
3.3.5.3. SEM analysis
3.3.5.4. TEM analysis
3.3.5.5. X-ray diffraction analysis of AgNPs
3.3.6. Mosquito larvicidal and pupicidal activity of AgNPs
3.3.6.1. Larvae and pupae collection
3.3.6.2. Larvicidal and pupicidal bioassay
3.3.7. Examination for the mechanism of AgNPs for mosquito larvicidal potential
3.3.7.1. Preparation of whole body homogenates
3.3.7.2. Determination of protein concentration
3.3.7.3. Acetylcholinesterase assays
3.3.7.4. Carboxylesterase assays
3.3.8. Statistical analysis
3.4. Results and discussion
3.4.1. Preliminary phytochemical testing
3.4.2. UV-Vis spectroscopy
3.4.3. FT-IR analysis
3.4.4. SEM, TEM analyses and EDX spectrum
3.4.5. X-ray diffraction analysis of AgNPs
3.4.6. Mosquito larvicidal and pupicidal activity
3.4.7. The mechanism of AgNPs and plant extract on mosquito larvae
Chapter 4 Synthesis and characterization of silver nanoparticles using Bacillusamyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens andits antimicrobial activity
4.2. Introduction
4.3. Materials and methods
4.3.1. Isolation and definition of the bacteria
4.3.2. Extracellular synthesis silver nanoparticles
4.3.3. Characterization of Bacillus-AgNPs
4.3.4. Larvicidal and pupicidal activity
4.3.4.1. Larvae and pupae collection
4.3.4.2. Larvicidal and pupicidal assay
4.3.5. In vitro, the effects of nanoparticles, Bacillus strains against Xanthomonas oryzaepv. Oryzae
4.3.6. Statistical analysis
4.4. Results and discussion
4.4.1. Characterization and biological synthesis of AgNPs
4.4.1.1. UV-Vis spectroscopy
4.4.1.2. FT-IR analysis
4.4.1.3. SEM and X-ray diffraction analysis
4.4.1.4. TEM and EDX spectrum analyses
4.4.2. Toxicity of bacillus-AgNPs to mosquito larvae and pupae
4.4.4. Antimicrobial efficiency of nanoparticles and Bacillus strains
Chapter 5 Novel applications of organic ligands formulations as nanoparticles againstagriculture pests and its mode of action
5.2. Introduction
5.3. Materials and Methods
5.3.1. Chemicals
5.3.2. Synthesis of 2'-Amino-1,1':4',1"-terphenyl-3,3",5,5"-tetracarboxylic acid (H4L)
5.3.3. Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)
5.3.4. Synthesis of silver as a nanoparticle with H4L and TBAPy
5.3.5. Characterization of synthesized AgNPs
5.3.5.1. UV-Vis spectral analysis
5.3.5.2. FT-IR analysis
5.3.5.3. SEM and EDS analyses
5.3.5.4. TEM and X-ray diffraction analyses of AgNPs
5.3.5.5. Silver nanoparticles size analysis
5.3.6. Insects
5.3.7. Toxicity bioassay
5.3.8. Action mechanism of AgNPs on N. lugens
5.3.8.1. Preparation of whole body homogenates
5.3.8.2. Determination of protein concentration
5.3.8.3. Acetylcholinesterase assays
5.3.8.4. Esterase assay
5.3.8.5 Phosphatase assay
5.3.9. Data analysis
5.4. Results and discussion
5.4.1. Synthesis of H4L and TBAPy
5.4.2. Synthesis of silver metal with organic ligands
5.4.3. Characterization of H4L-NPs and TBAPy NPs
5.4.3.1. UV Vis spectroscopy
5.4.3.2. FT-IR analysis
5.4.3.3. SEM analyses and EDX spectrum
5.4.3.4. TEM and X-ray diffraction analysis of AgNPs
5.4.3.5. Nanoparticle size analysis
5.4.4. Toxicity of AgNPs to unsexed adult of brown planthoppers
5.4.5. Inhibitory activity assessment of H4L, TBAPy, and synthesized AgNPs on BPHenzymes
Chapter 6 Myco-synthesis of silver nanoparticles using pathogenic bacteriaPseudomonas aeruginosa, Staphylococcus aureus and nonpathogenic bacteriaBacillus subtilis against brown planthopper Nilaparvata lugens (Stal) (Homoptera:Delphacidae)
6.2. Introduction
6.3. Materials and methods
6.3.1. Isolation and definition of the bacteria
6.3.2. Extracellular synthesis silver nanoparticles
6.3.3. Characterization of synthesized silver nanoparticles
6.3.4. Nilaparvata lugens rearing
6.3.5. Insecticidal experiments against brown planthopper
6.3.6. Statistical analysis
6.4. Results and discussion
6.4.1. Characterization of bacteria-synthesized silver nanoparticles
6.4.1.1. Visual examination and UV-visible spectrum
6.4.1.2. SEM and EDX spectroscopy analysis
6.4.1.3. TEM and XRD:pureness and crystalline nature of bacteria-NPs
6.4.1.4. Fourier transforms infrared spectroscopy of bacteria-synthesizedAgNPs
6.4.2. Characteristic and uses of biosynthesized silver nanoparticles
6.4.3. Characteristic and uses of biosynthesized silver nanoparticles
Chapter 7 General conclusions
References
List of Publications
本文編號:3948753
【文章頁數(shù)】:146 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgement
Abstract
摘要
List of Abbreviation
Chapter 1 Introduction
Chapter 2 Literature Review
2.1. Nanotechnology: An Advanced Approach to the Development of Potent Insecticides
2.2. Mechanical Reduction of Particle Size
2.3. Plant-Based Synthesis of Silver Nanoparticles
2.4. Bacteria-mediated synthesis of AgNPs
2.4.1. Extracellular synthesis
2.4.2. Synthesis using culture supernatant
2.4.3. Synthesis using cell-free extract
2.5. Possible mechanisms
2.6. Agricultural pests and mosquito
2.6.1. Brown planthopper (Nilaparvata lugens)
2.6.2. Life History of Nilaparvata lugens
2.6.3. The economic importance for brown planthopper
2.7. Mosquitoes
2.7.1. Life History of mosquito
2.7.2. The economic importance of mosquitoes
Chapter 3 Controlling Aedes albopictus and Culex pipiens pallens using silvernanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode ofaction
3.2. Introduction
3.3. Materials and Methods
3.3.1. Chemicals and Plant materials
3.3.2. Preparation of plant fruit extract
3.3.3. Preliminary phytochemical testing
3.3.4. Synthesis of silver nanoparticles
3.3.5. Characterization of synthesized C. fistula/AgNPs
3.3.5.1. UV-Vis spectral analysis
3.3.5.2. FT-IR analysis
3.3.5.3. SEM analysis
3.3.5.4. TEM analysis
3.3.5.5. X-ray diffraction analysis of AgNPs
3.3.6. Mosquito larvicidal and pupicidal activity of AgNPs
3.3.6.1. Larvae and pupae collection
3.3.6.2. Larvicidal and pupicidal bioassay
3.3.7. Examination for the mechanism of AgNPs for mosquito larvicidal potential
3.3.7.1. Preparation of whole body homogenates
3.3.7.2. Determination of protein concentration
3.3.7.3. Acetylcholinesterase assays
3.3.7.4. Carboxylesterase assays
3.3.8. Statistical analysis
3.4. Results and discussion
3.4.1. Preliminary phytochemical testing
3.4.2. UV-Vis spectroscopy
3.4.3. FT-IR analysis
3.4.4. SEM, TEM analyses and EDX spectrum
3.4.5. X-ray diffraction analysis of AgNPs
3.4.6. Mosquito larvicidal and pupicidal activity
3.4.7. The mechanism of AgNPs and plant extract on mosquito larvae
Chapter 4 Synthesis and characterization of silver nanoparticles using Bacillusamyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens andits antimicrobial activity
4.2. Introduction
4.3. Materials and methods
4.3.1. Isolation and definition of the bacteria
4.3.2. Extracellular synthesis silver nanoparticles
4.3.3. Characterization of Bacillus-AgNPs
4.3.4. Larvicidal and pupicidal activity
4.3.4.1. Larvae and pupae collection
4.3.4.2. Larvicidal and pupicidal assay
4.3.5. In vitro, the effects of nanoparticles, Bacillus strains against Xanthomonas oryzaepv. Oryzae
4.3.6. Statistical analysis
4.4. Results and discussion
4.4.1. Characterization and biological synthesis of AgNPs
4.4.1.1. UV-Vis spectroscopy
4.4.1.2. FT-IR analysis
4.4.1.3. SEM and X-ray diffraction analysis
4.4.1.4. TEM and EDX spectrum analyses
4.4.2. Toxicity of bacillus-AgNPs to mosquito larvae and pupae
4.4.4. Antimicrobial efficiency of nanoparticles and Bacillus strains
Chapter 5 Novel applications of organic ligands formulations as nanoparticles againstagriculture pests and its mode of action
5.2. Introduction
5.3. Materials and Methods
5.3.1. Chemicals
5.3.2. Synthesis of 2'-Amino-1,1':4',1"-terphenyl-3,3",5,5"-tetracarboxylic acid (H4L)
5.3.3. Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)
5.3.4. Synthesis of silver as a nanoparticle with H4L and TBAPy
5.3.5. Characterization of synthesized AgNPs
5.3.5.1. UV-Vis spectral analysis
5.3.5.2. FT-IR analysis
5.3.5.3. SEM and EDS analyses
5.3.5.4. TEM and X-ray diffraction analyses of AgNPs
5.3.5.5. Silver nanoparticles size analysis
5.3.6. Insects
5.3.7. Toxicity bioassay
5.3.8. Action mechanism of AgNPs on N. lugens
5.3.8.1. Preparation of whole body homogenates
5.3.8.2. Determination of protein concentration
5.3.8.3. Acetylcholinesterase assays
5.3.8.4. Esterase assay
5.3.8.5 Phosphatase assay
5.3.9. Data analysis
5.4. Results and discussion
5.4.1. Synthesis of H4L and TBAPy
5.4.2. Synthesis of silver metal with organic ligands
5.4.3. Characterization of H4L-NPs and TBAPy NPs
5.4.3.1. UV Vis spectroscopy
5.4.3.2. FT-IR analysis
5.4.3.3. SEM analyses and EDX spectrum
5.4.3.4. TEM and X-ray diffraction analysis of AgNPs
5.4.3.5. Nanoparticle size analysis
5.4.4. Toxicity of AgNPs to unsexed adult of brown planthoppers
5.4.5. Inhibitory activity assessment of H4L, TBAPy, and synthesized AgNPs on BPHenzymes
Chapter 6 Myco-synthesis of silver nanoparticles using pathogenic bacteriaPseudomonas aeruginosa, Staphylococcus aureus and nonpathogenic bacteriaBacillus subtilis against brown planthopper Nilaparvata lugens (Stal) (Homoptera:Delphacidae)
6.2. Introduction
6.3. Materials and methods
6.3.1. Isolation and definition of the bacteria
6.3.2. Extracellular synthesis silver nanoparticles
6.3.3. Characterization of synthesized silver nanoparticles
6.3.4. Nilaparvata lugens rearing
6.3.5. Insecticidal experiments against brown planthopper
6.3.6. Statistical analysis
6.4. Results and discussion
6.4.1. Characterization of bacteria-synthesized silver nanoparticles
6.4.1.1. Visual examination and UV-visible spectrum
6.4.1.2. SEM and EDX spectroscopy analysis
6.4.1.3. TEM and XRD:pureness and crystalline nature of bacteria-NPs
6.4.1.4. Fourier transforms infrared spectroscopy of bacteria-synthesizedAgNPs
6.4.2. Characteristic and uses of biosynthesized silver nanoparticles
6.4.3. Characteristic and uses of biosynthesized silver nanoparticles
Chapter 7 General conclusions
References
List of Publications
本文編號:3948753
本文鏈接:http://sikaile.net/nykjlw/dzwbhlw/3948753.html
最近更新
教材專著