基于自適應(yīng)粒子群算法的特征選擇研究
[Abstract]:In the problem of pattern classification, there are often many unrelated or redundant features in the data, which affects the accuracy of classification. As an effective means to solve this problem, feature selection has always been a hot spot in machine learning. With the increase of data scale, the original feature selection method no longer meets the requirements. Feature selection can be regarded as a dynamic optimization process, and particle swarm optimization algorithm is a hot algorithm in swarm intelligence algorithm at present. because of its simplicity, easy implementation and high efficiency, particle swarm optimization algorithm has attracted extensive attention. The combination of particle swarm optimization algorithm and feature selection method has also become a research focus. A large number of studies have shown that the combination of particle swarm optimization algorithm and feature selection is feasible and has good performance. In this paper, some work has been done on the improvement of particle swarm optimization algorithm itself and the combination of feature selection problem and particle swarm optimization method. The first is to improve the particle swarm optimization algorithm. Because of its limitations, the ordinary particle swarm optimization algorithm is often easy to fall into local optimization. On the basis of the backbone particle swarm optimization algorithm, an adaptive particle swarm optimization algorithm based on interference factor is proposed. In the initial process of the algorithm, chaos model is introduced to increase the diversity of the initial particles, and at the same time, the adaptive factor is introduced into the update mechanism to increase its global search ability. Improve the optimization efficiency of the algorithm. Secondly, the local and global optimal iterative formulas of particles in particle swarm optimization are improved. In the process of updating, the discussion of the number of features is introduced, especially the mutual information filtering features are introduced in the decoding process to simplify the feature subset. The purpose of feature selection is to achieve the best optimization effect by using the least features. In the previous research process, the number of features in the feature subset was ignored because of the pursuit of better classification effect. Finally, a feature selection algorithm based on hybrid pattern evaluation mechanism is proposed. The feature selection process is divided into two stages. In the first stage, the filtering mode evaluation mechanism based on rough set is adopted, and in the second stage, the encapsulation mode evaluation mechanism based on neighborhood algorithm is adopted. In order to verify the above theory, different types of data sets are selected for classification experiments, and the experimental results verify the effectiveness and practicability of the proposed algorithm.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 鄢夢(mèng)迪;秦琳琳;吳剛;;基于主成分分析和K近鄰的文件類型識(shí)別算法[J];計(jì)算機(jī)應(yīng)用;2016年11期
2 王曉梅;林曉惠;黃鑫;;基于特征有效范圍的前向特征選擇及融合分類算法[J];小型微型計(jì)算機(jī)系統(tǒng);2016年06期
3 楊云峰;;基于Relief-SBS特征選擇算法的入侵檢測(cè)方法研究[J];河池學(xué)院學(xué)報(bào);2013年02期
4 姚旭;王曉丹;張玉璽;權(quán)文;;特征選擇方法綜述[J];控制與決策;2012年02期
5 麥范金;李東普;岳曉光;;基于雙向匹配法和特征選擇算法的中文分詞技術(shù)研究[J];昆明理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
6 葉吉祥;龔希齡;;一種快速的Wrapper式特征子集選擇新方法[J];長(zhǎng)沙理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
7 田東平;趙天緒;;基于Sigmoid慣性權(quán)值的自適應(yīng)粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2008年12期
8 張浩;沈繼紅;張鐵男;李陽(yáng);;一種基于混沌映射的粒子群優(yōu)化算法及性能仿真[J];系統(tǒng)仿真學(xué)報(bào);2008年20期
9 張麗新;王家欽;趙雁南;楊澤紅;;機(jī)器學(xué)習(xí)中的特征選擇[J];計(jì)算機(jī)科學(xué);2004年11期
相關(guān)碩士學(xué)位論文 前6條
1 劉星;基于粒子群優(yōu)化算法的特征選擇方法研究[D];南京大學(xué);2015年
2 許露;基于SVM-RFE和粒子群算法的特征選擇算法研究[D];湖南師范大學(xué);2014年
3 張同偉;基于多分類器組合的垃圾網(wǎng)頁(yè)的檢測(cè)[D];華南理工大學(xué);2010年
4 姜百寧;機(jī)器學(xué)習(xí)中的特征選擇算法研究[D];中國(guó)海洋大學(xué);2009年
5 黃繼紅;基于改進(jìn)PSO的BP網(wǎng)絡(luò)的研究及應(yīng)用[D];長(zhǎng)沙理工大學(xué);2008年
6 付延安;基于遺傳算法與粗集理論的車間調(diào)度研究[D];山東大學(xué);2007年
,本文編號(hào):2504507
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2504507.html