天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

基于協(xié)同進化神經(jīng)網(wǎng)絡(luò)集成的控制圖模式識別技術(shù)研究

發(fā)布時間:2019-06-18 13:51
【摘要】:隨著生產(chǎn)技術(shù)的進步,消費者的需求日益提高。這種需求不僅意味著需求量的增加,更有需求品質(zhì)的提升。質(zhì)量管理是現(xiàn)代化工業(yè)生產(chǎn)提高市場競爭優(yōu)勢的一個重要方法。在現(xiàn)代化工業(yè)生產(chǎn)過程中,穩(wěn)定的工藝流程是影響產(chǎn)品質(zhì)量的一個重要因素。統(tǒng)計過程控制中的質(zhì)量控制圖,常被用來監(jiān)控產(chǎn)品質(zhì)量的穩(wěn)定性。然而傳統(tǒng)的控制圖已不再適應現(xiàn)代化大生產(chǎn)的需求。借助于先進的計算機信息處理技術(shù),把人工智能技術(shù)應用工業(yè)過程控制中去,實現(xiàn)工業(yè)過程中質(zhì)量控制的實時性、準確性是當前國內(nèi)外專家學者研究的方向之一。本文總結(jié)了在現(xiàn)代化工業(yè)生產(chǎn)過程中,關(guān)于質(zhì)量管理領(lǐng)域的控制圖模式識別的國內(nèi)外研究現(xiàn)狀和發(fā)展趨勢,介紹了統(tǒng)計過程控制的基本概念和質(zhì)量控制圖的基本原理,對本文涉及的控制圖的判定原則、神經(jīng)網(wǎng)絡(luò)的基本理論及其泛化和集成理論、協(xié)同進化等相關(guān)理論進行了闡述和分析,給本文研究的開展提供了理論支撐。通過分析目前質(zhì)量控制圖模式識別方法中存在的不足和缺陷,結(jié)合人工神經(jīng)網(wǎng)絡(luò)在處理復雜分類問題方面的特點,利用協(xié)同進化的思想提出了一種神經(jīng)網(wǎng)絡(luò)集成的設(shè)計和訓練的方法。通過對神經(jīng)網(wǎng)絡(luò)集成泛化誤差的分析,將神經(jīng)網(wǎng)絡(luò)學習算法和協(xié)同進化算法相結(jié)合,用個體網(wǎng)絡(luò)的相關(guān)度度量網(wǎng)絡(luò)集成的誤差從而實現(xiàn)個體網(wǎng)絡(luò)的差異性,個體神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)在學習過程中自動確定,保持了個體網(wǎng)絡(luò)的準確性,通過構(gòu)造方法自動確定神經(jīng)網(wǎng)絡(luò)集成的結(jié)構(gòu),提高了集成學習系統(tǒng)的穩(wěn)定性和泛化能力。最后利用蒙特卡羅質(zhì)量特征數(shù)據(jù)模擬方法生成與實際生產(chǎn)過程相似的質(zhì)量特征序列,運用MATLAB2012a對控制圖6種基本模式識別網(wǎng)絡(luò)進行編程訓練,仿真結(jié)果表明所訓練的神經(jīng)網(wǎng)絡(luò)集成CNNE模型具有很強的識別能力其性能明顯優(yōu)于BP網(wǎng)絡(luò)和RBF網(wǎng)絡(luò)等單個的神經(jīng)網(wǎng)絡(luò)分類方法,也優(yōu)于Bagging和Adaboost等傳統(tǒng)的集成方法。
[Abstract]:With the progress of production technology, the demand of consumers is increasing day by day. This demand not only means the increase of demand, but also the improvement of demand quality. Quality management is an important method to improve the competitive advantage of modern industrial production. In the process of modern industrial production, stable technological process is an important factor affecting product quality. The quality control chart in statistical process control is often used to monitor the stability of product quality. However, the traditional control chart is no longer suitable for the needs of modern mass production. With the help of advanced computer information processing technology, artificial intelligence technology is applied to industrial process control to realize the real-time quality control in industrial process. Accuracy is one of the current research directions of experts and scholars at home and abroad. This paper summarizes the research status and development trend of control chart pattern recognition in the field of quality management at home and abroad in the process of modern industrial production, introduces the basic concept of statistical process control and the basic principle of quality control chart, and expounds and analyzes the decision principle of control chart, the basic theory of neural network and its generalization and integration theory, co-evolution and so on. It provides theoretical support for the development of this paper. By analyzing the shortcomings and defects of the current quality control chart pattern recognition methods, combined with the characteristics of artificial neural network in dealing with complex classification problems, a neural network integration design and training method is proposed by using the idea of co-evolution. Through the analysis of the generalization error of neural network integration, the neural network learning algorithm and co-evolution algorithm are combined, and the correlation degree of individual network is used to measure the error of network integration so as to realize the difference of individual network. The structure of individual neural network is determined automatically in the learning process, which maintains the accuracy of individual network, and the structure of neural network integration is determined automatically by construction method. The stability and generalization ability of the integrated learning system are improved. Finally, Monte Carlo quality feature data simulation method is used to generate quality feature sequences similar to the actual production process, and MATLAB2012a is used to program and train six basic pattern recognition networks in control chart. The simulation results show that the trained neural network integrated CNNE model has strong recognition ability, and its performance is obviously better than that of BP network and RBF network, as well as the traditional integration methods such as Bagging and Adaboost.
【學位授予單位】:中北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP183

【參考文獻】

相關(guān)期刊論文 前8條

1 王潤飛;張克勇;趙雪娟;陳曉情;;基于RBF神經(jīng)網(wǎng)絡(luò)的過程質(zhì)量診斷研究[J];河北企業(yè);2016年07期

2 張宇波;藺小楠;;改進序列前向選擇法(ISFS)和極限學習機(ELM)相結(jié)合的SPC控制圖模式識別方法[J];青島科技大學學報(自然科學版);2015年03期

3 李誠;張宏烈;趙鑫;;混合智能算法的控制圖模式識別仿真研究[J];計算機仿真;2013年10期

4 李太福;胡勝;魏正元;韓亞軍;;基于遺傳優(yōu)化的PCA-SVM控制圖模式識別[J];計算機應用研究;2012年12期

5 吳常坤;趙麗萍;;基于小波分析和SVM的控制圖模式識別[J];中國機械工程;2010年13期

6 楊世元;吳德會;蘇海濤;;基于PCA和SVM的控制圖失控模式智能識別方法[J];系統(tǒng)仿真學報;2006年05期

7 樂清洪,朱名銓,王潤孝;一種新型的神經(jīng)網(wǎng)絡(luò)及其在智能質(zhì)量診斷分析中的應用[J];機械科學與技術(shù);2005年01期

8 樂清洪 ,李建文 ,安翔 ,朱名銓;控制圖異常模式參數(shù)估計的神經(jīng)網(wǎng)絡(luò)方法[J];航空制造技術(shù);2002年04期

,

本文編號:2501536

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2501536.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶897ce***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
操白丝女孩在线观看免费高清 | 国内欲色一区二区三区| 国产精品不卡免费视频| 在线观看中文字幕91| 日韩欧美一区二区不卡看片| 99福利一区二区视频| 日韩精品一区二区三区射精| 中文字幕日韩无套内射| 国产免费观看一区二区| 亚洲欧美日本视频一区二区| 欧美精品久久一二三区| 好吊色免费在线观看视频| 亚洲欧美日韩精品永久| 亚洲国产成人一区二区在线观看| 亚洲欧洲在线一区二区三区| 日韩一区二区三区在线欧洲| 又黄又硬又爽又色的视频| 欧美一级日韩中文字幕| 厕所偷拍一区二区三区视频| 五月婷婷综合缴情六月| 黄片在线免费看日韩欧美| 精品视频一区二区三区不卡| 欧美尤物在线观看西比尔| 最新69国产精品视频| 色涩一区二区三区四区| 美女极度色诱视频在线观看| 99视频精品免费视频播放| 日韩免费成人福利在线| 久久精品国产第一区二区三区| 国产亚洲精品俞拍视频福利区| 精品国产91亚洲一区二区三区| 日本东京热加勒比一区二区| 黑丝袜美女老师的小逼逼| 亚洲第一区二区三区女厕偷拍| 亚洲天堂一区在线播放| 中文字幕在线区中文色| 91亚洲国产日韩在线| 色一欲一性一乱—区二区三区| 日本加勒比系列在线播放| 国内精品一区二区欧美| 婷婷一区二区三区四区|