基于概率假設(shè)密度的多傳感器多目標(biāo)跟蹤技術(shù)研究
[Abstract]:As a research focus in the field of multi-sensor information fusion, multi-target tracking technology has a wide range of applications in military and civil fields. The traditional multi-target tracking method is based on the classical probability theory. The core of the traditional multi-target tracking method is to solve the problem of multi-target data association. The tracking process is easily affected by the complex environment such as unknown number of targets, dense clutters, low detection rate and so on, which leads to the increase of the complexity of the data association problem and the decrease of tracking accuracy. In recent years, probabilistic hypothetical density (Probability Hypothesis Density,PHD) filtering methods based on stochastic finite set (Random Finite Set,RFS) have attracted much attention. By using RFS theory, the target state set and the sensor measurement set can be described in a probability hypothetical density space, which effectively avoids the problem of data association in the traditional tracking algorithm. However, most of the multi-target tracking methods based on random finite sets are proposed for single sensor. In complex environment, it is difficult to rely only on the information obtained by a single sensor for stable and accurate filtering estimation. It is usually necessary to fuse the information of multiple sensors to meet the tracking requirements. In this paper, the problem of multi-sensor multi-target tracking with high hash rate and low detection rate is studied. The main work and research results are as follows: 1) aiming at the degradation of tracking effect of single-sensor application PHD filter in high clutter environment, an adaptive multi-sensor data fusion algorithm based on Gao Si hybrid PHD filter is proposed by constructing the distributed multi-sensor data fusion structure model. The simulation results show that compared with the single sensor, the proposed algorithm effectively improves the tracking accuracy. 2) aiming at the limitations of the conventional track fusion algorithm in different clutter environment and detection rate, the tracking effect is limited. In this paper, a distributed multi-sensor data fusion structure model with feedback is constructed, and two different multi-sensor PHD fusion algorithms, extreme value fusion algorithm and product fusion algorithm, are proposed. The simulation results of different scenarios show that the proposed algorithm is superior to the traditional algorithm. 3) the conventional multi-target tracking is extended to multi-maneuvering target tracking, and the interactive multi-model (Interacting Multiple Model Algorithm,IMM algorithm is introduced to construct a multi-sensor IMM-GMPHD filtering algorithm for multi-maneuvering target tracking, which can effectively deal with the multi-maneuvering target tracking problem in cluttered environment. The simulation results show that the proposed algorithm can obtain higher accuracy of target state estimation when the target maneuvers.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蒼巖;馬瑩;喬玉龍;;高斯混合概率假設(shè)密度濾波的改進(jìn)與應(yīng)用研究[J];系統(tǒng)工程與電子技術(shù);2016年11期
2 秦嶺;黃心漢;;自適應(yīng)目標(biāo)新生強(qiáng)度的SMC-PHD/CPHD濾波[J];控制與決策;2016年08期
3 申屠晗;薛安克;駱吉安;;多步歷史估計(jì)信息反饋多模型融合方法[J];控制理論與應(yīng)用;2015年01期
4 楊峰;王永齊;梁彥;潘泉;;基于概率假設(shè)密度濾波方法的多目標(biāo)跟蹤技術(shù)綜述[J];自動(dòng)化學(xué)報(bào);2013年11期
5 徐洋;徐暉;羅少華;安瑋;;基于隨機(jī)有限集理論的多傳感器目標(biāo)聯(lián)合檢測(cè)跟蹤算法[J];國(guó)防科技大學(xué)學(xué)報(bào);2013年01期
6 王曉;韓崇昭;連峰;;基于隨機(jī)有限集的目標(biāo)跟蹤方法研究及最新進(jìn)展[J];工程數(shù)學(xué)學(xué)報(bào);2012年04期
7 楊威;付耀文;龍建乾;黎湘;;基于有限集統(tǒng)計(jì)學(xué)理論的目標(biāo)跟蹤技術(shù)研究綜述[J];電子學(xué)報(bào);2012年07期
8 呂學(xué)斌;周群彪;陳正茂;熊運(yùn)余;蔡葵;;高斯混合概率假設(shè)密度濾波器在多目標(biāo)跟蹤中的應(yīng)用[J];計(jì)算機(jī)學(xué)報(bào);2012年02期
9 劉貴喜;周承興;王澤毅;廖興海;;用于多個(gè)機(jī)動(dòng)目標(biāo)的混合高斯概率假設(shè)密度跟蹤器[J];控制理論與應(yīng)用;2011年08期
10 李偉;何鵬舉;高社生;;多傳感器加權(quán)信息融合算法研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2010年05期
相關(guān)會(huì)議論文 前1條
1 張英杰;古強(qiáng);余誠(chéng)剛;王偉;李秉國(guó);;基于PHD濾波的多傳感器多目標(biāo)跟蹤融合算法[A];2015航空試驗(yàn)測(cè)試技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2015年
相關(guān)博士學(xué)位論文 前3條
1 申屠晗;面向目標(biāo)跟蹤的信息反饋融合方法研究[D];浙江大學(xué);2014年
2 張鶴冰;概率假設(shè)密度濾波算法及其在多目標(biāo)跟蹤中的應(yīng)用[D];哈爾濱工程大學(xué);2012年
3 徐洋;基于隨機(jī)有限集理論的多目標(biāo)跟蹤技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 趙慧;多傳感器信息融合目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2014年
2 司冠楠;面向多目標(biāo)跟蹤的多傳感器數(shù)據(jù)融合方法研究[D];沈陽(yáng)理工大學(xué);2014年
3 魯振偉;基于PHD濾波的多傳感器融合方法研究[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):2501212
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2501212.html