基于FPGA分布式光纖傳感系統(tǒng)的設(shè)計(jì)及實(shí)現(xiàn)
[Abstract]:In the distributed optical fiber sensing system, the data sampling rate and the pulse width of the detection pulse light will affect the spatial resolution of the system, and the resolution between high altitude is pursued by the system. At the same time, the sensing signal is extremely weak and the signal-to-noise ratio is very low, so it is often inundated in the noise and can not be recognized directly, so it is necessary to process the data to a certain extent. Therefore, it is very meaningful to design a set of systems which can not only freely set the pulse width of the detected pulse light, can carry out high-speed data acquisition to ensure the spatial resolution of the system, but also can cache the data in large capacity, and can also process the data in real time to improve the signal-to-noise ratio (SNR). In this paper, based on the principle of distributed optical fiber sensing technology based on Rayleigh scattering, combined with the performance requirements of the system, the FPGA chip of Altera company model EP4CE15F17C8N is selected as the main controller and processor of the system, which is responsible for the timing, logic control and signal conditioning of the system, and a distributed optical fiber sensing system based on FPGA is designed. The design scheme of the system is modular design, the whole system is divided into five key functional modules, namely: pulse light generation module, data acquisition module, data cache module, data processing module and data transmission module. The main functions of each module and the selection of devices are explained as follows: the pulse light generation module produces the detection pulse light suitable for the system requirements, which can realize the pulse light generation of the minimum pulse width of 5 ns and the maximum frequency 100MHz, the data acquisition module uses the high speed AD6645 chip to convert the sensing signal, FPGA collects the converted data, and the ADC conversion rate can reach 80 100MHz. Two SDRAM chips are used to cache the data in the form of ping-pong operation. The data processing module mainly aims at the extremely weak and time-varying characteristics of the sensing signal. Firstly, the sliding accumulation average algorithm is used to process the data to improve the signal-to-noise ratio, and then the signal after improving the signal-to-noise ratio is processed by wavelet transform to extract the details of the signal. The data transmission between FPGA and the upper computer is realized by USB transmission module. In this paper, the key technologies and implementation methods of each functional module of the system are described in detail, and the related factors affecting the spatial resolution and signal-to-noise ratio of the system are analyzed, and the corresponding improvement measures are put forward. At the same time, the function of each functional module is verified. Finally, each functional module is combined to realize the whole system function, and the whole system is verified and tested, and the Fresnel reflection signal at the optical fiber connection point and the end of the optical fiber is successfully tested. The test results show that the distributed optical fiber sensing system based on FPGA has good performance, the design scheme is feasible and effective, and the expected effect is achieved, and the acquisition and processing effect of the distributed optical fiber sensing signal is obvious.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉勁軍;程永昕;劉國(guó)慶;張燕君;;基于C-S復(fù)合碼的OTDR系統(tǒng)信噪比提高方法[J];光通信技術(shù);2015年07期
2 劉杰;賽景波;;基于DDR2SDRAM乒乓雙緩沖的高速數(shù)據(jù)收發(fā)系統(tǒng)設(shè)計(jì)[J];電子器件;2015年03期
3 Daisy Williams;Xiaoyi Bao;Liang Chen;;Investigation of combined Brillouin gain and loss in a birefringent fiber with applications in sensing[J];Chinese Optics Letters;2014年12期
4 曹學(xué)友;祖靜;田壯;梁永燁;;基于FPGA的微弱信號(hào)快速采集處理方法[J];電子器件;2014年04期
5 李鑫;王勝勇;田麗艷;;高速ADC電路設(shè)計(jì)分析[J];微計(jì)算機(jī)信息;2011年08期
6 劉德明;孫琪真;;分布式光纖傳感技術(shù)及其應(yīng)用[J];激光與光電子學(xué)進(jìn)展;2009年11期
7 盧雪萍;任沙浦;;基于SDRAM的視頻數(shù)據(jù)存儲(chǔ)系統(tǒng)設(shè)計(jì)[J];紹興文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年03期
8 韓建文;;AD6645在軟件無線電中高速采樣電路設(shè)計(jì)[J];科學(xué)之友(B版);2009年06期
9 田多華;邱宏安;陸宇鵬;邵立群;;利用FPGA實(shí)現(xiàn)的多通道同步數(shù)據(jù)采集卡[J];電子技術(shù)應(yīng)用;2008年06期
10 安學(xué)軍;張建華;梁祥;;基于AD6645的脈沖功率測(cè)量模塊的設(shè)計(jì)[J];微計(jì)算機(jī)信息;2007年11期
相關(guān)博士學(xué)位論文 前3條
1 王宗良;分布式光纖拉曼溫度傳感系統(tǒng)信號(hào)處理及性能提升[D];山東大學(xué);2015年
2 胡君輝;基于瑞利和布里淵散射效應(yīng)的光纖傳感系統(tǒng)的研究[D];南京大學(xué);2013年
3 曹立軍;分布式光纖溫度測(cè)量及數(shù)據(jù)處理技術(shù)研究[D];合肥工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 黎燕兵;基于FPGA的分布式光纖傳感脈沖產(chǎn)生技術(shù)研究[D];南昌航空大學(xué);2016年
2 路浩亮;分布式光纖傳感系統(tǒng)數(shù)據(jù)采集技術(shù)的研究[D];南昌航空大學(xué);2016年
3 王松;數(shù)字信號(hào)處理對(duì)分布式光纖傳感系統(tǒng)性能提升的研究[D];電子科技大學(xué);2016年
4 郭燕;基于FPGA的光時(shí)域反射儀信號(hào)采集系統(tǒng)設(shè)計(jì)[D];太原理工大學(xué);2015年
5 黎進(jìn);基于新型放大/接收技術(shù)的長(zhǎng)距離分布式光纖傳感[D];電子科技大學(xué);2015年
6 熊玉華;基于編碼的分布式光纖傳感技術(shù)的研究[D];南昌航空大學(xué);2014年
7 陳曉勇;高速高分辨率ADC的測(cè)試研究[D];復(fù)旦大學(xué);2014年
8 孫麗妍;BOTDA分布式光纖溫度測(cè)量系統(tǒng)研究[D];北京化工大學(xué);2013年
9 楊惠姣;基于布里淵散射的分布式光纖傳感基礎(chǔ)研究[D];電子科技大學(xué);2012年
10 劉靜;基于FPGA的OTDR信號(hào)采集與處理技術(shù)研究[D];西安石油大學(xué);2011年
,本文編號(hào):2498354
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2498354.html