基于多示例學(xué)習(xí)的機(jī)器人目標(biāo)跟蹤技術(shù)研究
[Abstract]:With the continuous development and application of artificial intelligence technology, it has risen to the national strategic level. Robot, as the integration of artificial intelligence technology, is being paid more and more attention by more and more researchers in practical use. The autonomous target recognition and tracking application of mobile robot is also a core problem to be solved in its intelligent technology. How to migrate the improved machine learning algorithm to mobile robots and make its methods to deal with the problems of light change, occlusion and complex background are more robust, which is a very challenging research technology. In this paper, the autonomous target tracking and motion control of the robot are realized on the MT-R wheeled mobile robot platform through the improved machine learning algorithm, so as to further realize the intelligent application of the wheeled mobile robot. The main research contents of this paper can be summarized as follows: firstly, this paper reviews the research status of visual target tracking, enumerates the methods used in different visual target tracking algorithms, and analyzes the shortcomings of these algorithms. The tracking method based on multi-case learning and the algorithm combined with collaborative training are emphasized and analyzed. The foundation of the method theory in this paper is completed. At the same time, the research and development of mobile robots at home and abroad are briefly discussed. Then the internal target tracking algorithm of mobile robot is introduced in detail. The target tracking algorithm based on detection usually relies on the classifier to distinguish the target from the background to achieve the goal of tracking. When the classifier is learned, the image will be divided into two separate steps: sample sampling and tagging. However, the sample selected in this way is purposeless, which leads to the instability of the effect of the classifier. In this paper, based on the active learning model, a new sample selection algorithm is proposed. Based on the framework of multi-case learning algorithm, the active sample selection strategy is added between sample sampling and label allocation. In this way, the samples which are helpful to the learning of classifiers can be selected, and then the collaborative training method can be combined to prevent the drift caused by error accumulation and further improve the performance of the algorithm. Compared with the other six algorithms on the standard video sequence, the results show that the proposed method has good performance and robustness under the complex conditions of target occlusion, light change and so on. Finally, the target tracking algorithm is proposed on MT-R mobile robot, and the autonomous target tracking of mobile robot is realized by combining the hardware driving strategy of the robot. The robustness of mobile robot target tracking is verified by experiments in different practical scenarios. The experimental results show that the target tracking algorithm proposed in this paper can effectively help the mobile robot to track the target effectively under the condition of target occlusion, light change and so on.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王麗佳;賈松敏;李秀智;王爽;;基于改進(jìn)在線多示例學(xué)習(xí)算法的機(jī)器人目標(biāo)跟蹤[J];自動(dòng)化學(xué)報(bào);2014年12期
2 陳思;蘇松志;李紹滋;呂艷萍;曹冬林;;基于在線半監(jiān)督boosting的協(xié)同訓(xùn)練目標(biāo)跟蹤算法[J];電子與信息學(xué)報(bào);2014年04期
3 譚民;王碩;;機(jī)器人技術(shù)研究進(jìn)展[J];自動(dòng)化學(xué)報(bào);2013年07期
4 王素玉;沈蘭蓀;;智能視覺(jué)監(jiān)控技術(shù)研究進(jìn)展[J];中國(guó)圖象圖形學(xué)報(bào);2007年09期
5 胡斌;何克忠;;計(jì)算機(jī)視覺(jué)在室外移動(dòng)機(jī)器人中的應(yīng)用[J];自動(dòng)化學(xué)報(bào);2006年05期
6 侯志強(qiáng);韓崇昭;;視覺(jué)跟蹤技術(shù)綜述[J];自動(dòng)化學(xué)報(bào);2006年04期
相關(guān)博士學(xué)位論文 前2條
1 武玉偉;視覺(jué)目標(biāo)跟蹤中的表觀建模研究[D];北京理工大學(xué);2014年
2 邱雪娜;基于視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法及其在移動(dòng)機(jī)器人中的應(yīng)用[D];華東理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 韓信;基于雙目視覺(jué)的輪式機(jī)器人動(dòng)態(tài)避障研究[D];浙江大學(xué);2016年
2 姜衛(wèi)琳;智能移動(dòng)機(jī)器人均值漂移目標(biāo)跟蹤算法研究[D];西北大學(xué);2014年
3 張全喜;單目視覺(jué)自主移動(dòng)機(jī)器人的目標(biāo)跟蹤及誤差分析[D];南京理工大學(xué);2014年
4 周秋紅;基于多示例學(xué)習(xí)的運(yùn)動(dòng)目標(biāo)跟蹤算法研究[D];大連理工大學(xué);2010年
5 耿盛濤;基于雙目視覺(jué)的機(jī)器人目標(biāo)檢測(cè)與跟蹤研究[D];江南大學(xué);2010年
6 張亞楠;復(fù)雜背景下目標(biāo)跟蹤算法研究及其在移動(dòng)機(jī)器人中的應(yīng)用[D];華南理工大學(xué);2010年
,本文編號(hào):2496445
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2496445.html