基于Pareto改進貓群優(yōu)化算法的多目標拆卸線平衡問題
發(fā)布時間:2019-06-04 00:52
【摘要】:為求解多目標拆卸線平衡問題,提出了一種改進的貓群優(yōu)化算法.在該算法中,針對拆卸線平衡問題以拆卸序列為編碼的特點,提出一種基于隨機數(shù)和固定擾動的搜尋模式確保貓在當前位置附近有效的隨機搜索.將遺傳算法交叉操作和變異操作引入跟蹤模式中指導種群向全局最優(yōu)逼近,有效地克服了傳統(tǒng)貓群優(yōu)化算法容易早熟的缺點.建立外部檔案集并采用精英保留策略加速算法的收斂.最后,通過將該算法用于求解經典的多目標拆卸線平衡問題算例并與其它算法對比,驗證了算法的有效性.
[Abstract]:In order to solve the multi-objective disassembly line balance problem, an improved cat swarm optimization algorithm is proposed. In this algorithm, aiming at the problem of disassembly line balance, which is encoded by disassembly sequence, a search mode based on random number and fixed disturbance is proposed to ensure the effective random search of cat near the current position. The genetic algorithm cross operation and mutation operation are introduced into the tracking mode to guide the population to approximate to the global optimal, which effectively overcome the disadvantage that the traditional cat swarm optimization algorithm is easy to precocious. The external file set is established and the elite retention strategy is used to accelerate the convergence of the algorithm. Finally, the algorithm is applied to solve the classical multi-objective disassembly line balance problem and compared with other algorithms to verify the effectiveness of the algorithm.
【作者單位】: 西南交通大學機械工程學院;
【基金】:國家自然科學基金資助項目(51205328,51405403)
【分類號】:TH186;TP18
本文編號:2492354
[Abstract]:In order to solve the multi-objective disassembly line balance problem, an improved cat swarm optimization algorithm is proposed. In this algorithm, aiming at the problem of disassembly line balance, which is encoded by disassembly sequence, a search mode based on random number and fixed disturbance is proposed to ensure the effective random search of cat near the current position. The genetic algorithm cross operation and mutation operation are introduced into the tracking mode to guide the population to approximate to the global optimal, which effectively overcome the disadvantage that the traditional cat swarm optimization algorithm is easy to precocious. The external file set is established and the elite retention strategy is used to accelerate the convergence of the algorithm. Finally, the algorithm is applied to solve the classical multi-objective disassembly line balance problem and compared with other algorithms to verify the effectiveness of the algorithm.
【作者單位】: 西南交通大學機械工程學院;
【基金】:國家自然科學基金資助項目(51205328,51405403)
【分類號】:TH186;TP18
【相似文獻】
相關期刊論文 前6條
1 潘偉杰;謝慶生;李少波;;基于Pareto的制造資源能力評價[J];制造業(yè)自動化;2011年04期
2 薄瑞峰;李瑞琴;;基于Pareto最優(yōu)的概念結構方案多目標決策方法[J];西安交通大學學報;2006年09期
3 王安麟,朱學軍,張惠僑;Pareto多目標遺傳算法及其在機械健壯設計中的應用[J];機械設計與研究;2000年01期
4 劉厚才;廖艷春;;基于Pareto最優(yōu)解的零件制作方向優(yōu)化研究[J];工程圖學學報;2011年01期
5 聶松輝;廖述濤;;基于Pareto遺傳算法功率分流式無級變速器齒輪系多目標優(yōu)化設計[J];機械設計與研究;2014年03期
6 舒信偉;谷傳綱;楊波;肖軍;高闖;;基于Pareto類遺傳算法的平面葉柵多工況優(yōu)化[J];工程熱物理學報;2008年04期
相關碩士學位論文 前1條
1 董威;基于Pareto遺傳算法的起重機主梁優(yōu)化設計[D];大連理工大學;2005年
,本文編號:2492354
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2492354.html
最近更新
教材專著