基于力反饋的宏微機(jī)器人軸孔裝配策略研究
[Abstract]:With the continuous improvement of robot assembly technology, although the force servo control of robot has been realized, the control accuracy is still insufficient, so that the assembly efficiency is not high, and the intelligent assembly is realized. The breakthrough of cooperative assembly technology is the specific requirement of "made in China 2025", so how to realize fast and efficient intelligent assembly is urgent. In this paper, the axial hole assembly strategy of macro and micro robot based on force feedback is studied, which lays the foundation for the final realization of force servo control of macro and micro assembly robot. Analysis of forward and inverse kinematic solutions of parallel microplatforms. Firstly, the position and attitude description of the parallel microplatform are determined, and the inverse kinematic solution equation of the parallel robot is derived according to the vector relationship between the moving and the static platform, and the inverse solution of the microplatform is solved by z-y-x Euler angle rule. Then, the forward position solution of the parallel robot is solved by the rod length iteration method based on the inverse position solution, and the forward and inverse kinematic solution is verified by an example. The results show that the driving rod of the parallel microplatform can quickly approximate the known rod length and is suitable for real-time control and theoretical analysis. Theoretical study on shaft hole assembly. Firstly, the assembly process of the shaft hole is analyzed, and the contact state of the shaft hole is divided, with emphasis on the mechanical analysis and geometric analysis of the three-point contact model of the shaft hole. Then, combined with spiral theory and virtual work principle, all kinds of contact states that may appear in the process of shaft hole assembly are distinguished, and the transformation matrix relationship between force sensor coordinate system and shaft hole contact coordinate system is given. Finally, the assembly scheme of shaft hole is given. Path planning of end actuator based on improved artificial potential field method. In order to make the end actuator of assembly robot have good flexibility, the repulsive potential function of the traditional artificial potential field method is improved. Then, the path planning simulation platform of robot terminal actuator is established on Visual Studio 2010 platform, and the path planning simulation experiment in single obstacle and multi-obstacle environment of robot is carried out. The results show that the target unreachable problem existing in the classical artificial potential field method is solved, and the effectiveness and practicability of the improved artificial potential field method are verified. 4. Strategy planning and kinematic simulation of pose adjustment at the end of microplatform. Firstly, through the analysis of the force information fed back by the six-dimensional force sensor, six components of the assembly force vector in the sensor are obtained, and the formula for solving the position and pose of the assembly force vector is derived. Then, based on the decoupling six-dimensional force information, the adjustment strategy of the position and pose at the end of the microplatform is proposed. Finally, through the analysis of the structure of parallel microplatform, the physical simulation model of microplatform is established based on Matlab/SimMechanics by using the idea of parametric and modular design. The kinematic simulation experiment of parallel microplatform is realized by combining the motion trajectory of Simulink given microplatform. the results show that the deviation between the expected rod length and the actual rod length is 0.04mm and the error is 2.67%. 5. Motion trajectory control experiment of microplatform. Firstly, the experimental platform of parallel microplatform motion control based on fixed height motion controller is built. Secondly, through the point control mode and the state setting of each axis of the parallel microplatform control system, combined with the kinematic analysis of the microplatform, the motion control experiment of the planning trajectory of the microplatform is completed. Finally, the experimental results show that the motion sequence of the parallel microplatform is basically consistent with the planned trajectory, and the effectiveness of trajectory control for the parallel microplatform is verified.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙磊;范夢然;趙新華;周海波;欒倩倩;;柔性并聯(lián)機(jī)器人非線性摩擦動(dòng)力學(xué)建模與速度規(guī)劃[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年05期
2 劉佳剛;吳艷陽;張立先;;基于SimMechanics的工業(yè)機(jī)器人工作空間關(guān)鍵技術(shù)研究[J];計(jì)算機(jī)時(shí)代;2017年01期
3 康信勇;趙翼翔;陳新;;基于SimMechanics的六自由度機(jī)械臂仿真研究[J];機(jī)床與液壓;2016年23期
4 孔民秀;陳正升;劉明;季晨;;采用積分流形與觀測器的并聯(lián)機(jī)器人軌跡控制[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2017年01期
5 常健;王亞珍;李斌;;基于力/位混合算法的7自由度機(jī)械臂精細(xì)操控方法[J];機(jī)器人;2016年05期
6 葉長龍;佟澤卉;于蘇洋;姜春英;;全方位移動(dòng)裝配機(jī)器人運(yùn)動(dòng)學(xué)分析[J];機(jī)器人;2016年05期
7 吳小勇;謝志江;陳長松;劉飛;;三維階梯軸孔非接觸式裝配技術(shù)研究[J];計(jì)算機(jī)集成制造系統(tǒng);2017年01期
8 歐陽帆;張鐵;陳楊;;用于機(jī)器人軸孔裝配的主 被動(dòng)結(jié)合柔順裝置[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年07期
9 田浩;余躍慶;;柔順并聯(lián)機(jī)器人動(dòng)力學(xué)及軌跡跟蹤[J];機(jī)械工程學(xué)報(bào);2016年13期
10 劉卓立;王志輝;;箱體部件自動(dòng)化裝配工裝夾具設(shè)計(jì)[J];組合機(jī)床與自動(dòng)化加工技術(shù);2016年03期
相關(guān)博士學(xué)位論文 前6條
1 孫永軍;空間機(jī)械臂六維力/力矩傳感器及其在線標(biāo)定的研究[D];哈爾濱工業(yè)大學(xué);2016年
2 賈坤;基于超聲輻射力及力矩的非接觸型微裝配關(guān)鍵技術(shù)研究[D];浙江大學(xué);2013年
3 劉暢;微裝配機(jī)器人關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2012年
4 劉傳領(lǐng);基于勢場法和遺傳算法的機(jī)器人路徑規(guī)劃技術(shù)研究[D];南京理工大學(xué);2012年
5 陳鐵華;六自由度力反饋雙向伺服控制策略研究[D];吉林大學(xué);2010年
6 李磊;六自由度并聯(lián)平臺(tái)位置正解及控制方法研究[D];哈爾濱工程大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 王堅(jiān)寧;激光陀螺腔體抖動(dòng)輪自動(dòng)裝配系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 吳海燕;新型3-PUU空間并聯(lián)機(jī)器人運(yùn)動(dòng)控制研究[D];重慶大學(xué);2016年
3 陳勛漫;基于手眼視覺的Baxter雙臂機(jī)器人軸孔抓取與裝配方法研究[D];華南理工大學(xué);2016年
4 鐘有博;六自由度并聯(lián)平臺(tái)的建模與仿真研究[D];天津工業(yè)大學(xué);2016年
5 耿以才;基于動(dòng)態(tài)人工勢場法無人駕駛汽車路徑規(guī)劃研究[D];上海工程技術(shù)大學(xué);2016年
6 李海龍;基于視覺/力傳感器的機(jī)器人柔順裝配技術(shù)研究[D];燕山大學(xué);2014年
7 王遠(yuǎn)東;6-SPS并聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)分析與精度研究[D];河北工程大學(xué);2013年
8 王密信;環(huán)片精密裝配系統(tǒng)精度分析及控制[D];大連理工大學(xué);2012年
9 吳遙;基于六維力傳感器的柔順裝配理論與實(shí)驗(yàn)研究[D];燕山大學(xué);2012年
10 溫敬召;并聯(lián)機(jī)器人模型及控制策略研究[D];武漢理工大學(xué);2012年
,本文編號(hào):2484408
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2484408.html