基于廣義回歸神經(jīng)網(wǎng)絡(luò)的單位運營狀況分類
發(fā)布時間:2019-05-23 07:16
【摘要】:單位的運營狀況會直接影響股東和廣大人民的利益,針對運營狀況可以使用廣義回歸神經(jīng)網(wǎng)絡(luò)進行分類。由于廣義回歸神經(jīng)網(wǎng)絡(luò)中徑向基函數(shù)的擴展參數(shù)Spread的選取會導(dǎo)致分類的準(zhǔn)確率,提出了一種果蠅優(yōu)化算法優(yōu)化參數(shù)Spread的分類模型。充分利用了果蠅優(yōu)化算法的尋優(yōu)能力,將優(yōu)化后的參數(shù)代入到廣義回歸神經(jīng)網(wǎng)絡(luò)中對單位的財務(wù)數(shù)據(jù)進行運營狀況的分類。結(jié)果表明,與廣義回歸神經(jīng)網(wǎng)絡(luò)做比較,優(yōu)化后的網(wǎng)絡(luò)模型對數(shù)據(jù)的分類可以達(dá)到很高的準(zhǔn)確率,在相關(guān)領(lǐng)域的分類上有非常大的實用性。
[Abstract]:The operating condition of the unit will directly affect the interests of shareholders and the broad masses of the people, and the general regression neural network can be used to classify the operating situation. Because the selection of the extended parameter Spread of the radial basis function in the generalized regression neural network will lead to the accuracy of classification, a classification model of the optimization parameter Spread of Drosophila melanogaster optimization algorithm is proposed. Making full use of the optimization ability of Drosophila melanogaster optimization algorithm, the optimized parameters are substituted into the generalized regression neural network to classify the financial data of the unit. The results show that compared with the generalized regression neural network, the optimized network model can achieve high accuracy in the classification of data, and has great practicability in the classification of related fields.
【作者單位】: 中北大學(xué)理學(xué)院;
【基金】:國家自然科學(xué)基金資助項目(61275120)
【分類號】:TP183
,
本文編號:2483708
[Abstract]:The operating condition of the unit will directly affect the interests of shareholders and the broad masses of the people, and the general regression neural network can be used to classify the operating situation. Because the selection of the extended parameter Spread of the radial basis function in the generalized regression neural network will lead to the accuracy of classification, a classification model of the optimization parameter Spread of Drosophila melanogaster optimization algorithm is proposed. Making full use of the optimization ability of Drosophila melanogaster optimization algorithm, the optimized parameters are substituted into the generalized regression neural network to classify the financial data of the unit. The results show that compared with the generalized regression neural network, the optimized network model can achieve high accuracy in the classification of data, and has great practicability in the classification of related fields.
【作者單位】: 中北大學(xué)理學(xué)院;
【基金】:國家自然科學(xué)基金資助項目(61275120)
【分類號】:TP183
,
本文編號:2483708
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2483708.html
最近更新
教材專著