結(jié)合視覺(jué)注意機(jī)制與遞歸神經(jīng)網(wǎng)絡(luò)的圖像檢索
[Abstract]:Objective Image retrieval is an important task of computer vision. The key of image retrieval is the content description of image, and the content description of complex image is very challenging. The traditional method describes the image content with a fixed length vector. Therefore, a variable length sequence description model is proposed in order to enrich the information expression ability of feature coding and improve the retrieval accuracy. Methods in this paper, a sequence description model is proposed, and a variable length feature sequence is used to describe the image. The sequence description model first uses CNN (convolutional neural network) to extract the underlying features, and then uses the intermediate layer LSTM (long short-term memory to generate the correlation representation of local features. Finally, the visual attention LSTM (attention LSTM) is used to generate a set of vectors to describe an image. The Hungarian algorithm is used to calculate the similarity between images to complete the task of image retrieval. The model uses label level triplet loss function for end-to-end training. Results Image retrieval experiments were carried out on MIRFLICKR-25K and NUS-WIDE datasets and compared with related algorithms. Compared with other methods, the retrieval accuracy of this model is improved by 512 percentage points. Compared with the fixed-length image description, this model can significantly improve the retrieval effect on multi-label datasets. Conclusion A new image sequence description model is proposed in this paper, which can significantly improve the retrieval effect and is suitable for multi-label image retrieval.
【作者單位】: 國(guó)防科學(xué)技術(shù)大學(xué)計(jì)算機(jī)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(U1435219)~~
【分類號(hào)】:TP391.41;TP183
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓法旺;;基于云計(jì)算模式的圖像檢索研究[J];情報(bào)科學(xué);2011年10期
2 何巖;;以計(jì)算機(jī)為基礎(chǔ)的色彩圖像檢索方法與研究[J];計(jì)算機(jī)光盤(pán)軟件與應(yīng)用;2013年12期
3 郭海鳳;李廣水;仇彬任;;基于融合多特征的社會(huì)網(wǎng)上圖像檢索方法[J];計(jì)算機(jī)與現(xiàn)代化;2013年12期
4 柏正堯,周紀(jì)勤;基于復(fù)數(shù)矩不變性的圖像檢索方法研究[J];計(jì)算機(jī)應(yīng)用;2000年10期
5 夏峰,張文龍;一種圖像檢索的新方法[J];計(jì)算機(jī)應(yīng)用研究;2002年11期
6 鄧誠(chéng)強(qiáng),馮剛;基于內(nèi)容的多特征綜合圖像檢索[J];計(jì)算機(jī)應(yīng)用;2003年07期
7 斯白露,高文,盧漢清,曾煒,段立娟;基于感興趣區(qū)域的圖像檢索方法[J];高技術(shù)通訊;2003年05期
8 劉怡,于沛;基于“知網(wǎng)”的新聞圖像檢索方法[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
9 張榮,鄭浩然,李金龍,王煦法;進(jìn)化加速技術(shù)在圖像檢索中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2004年16期
10 黃德才,胡嘉,鄭月鋒;交互式圖像檢索中相關(guān)反饋進(jìn)展研究[J];計(jì)算機(jī)應(yīng)用研究;2005年09期
相關(guān)會(huì)議論文 前10條
1 陳旭文;朱紅麗;;一種高效的圖像檢索方法[A];中國(guó)儀器儀表學(xué)會(huì)第九屆青年學(xué)術(shù)會(huì)議論文集[C];2007年
2 周向東;張亮;張琪;劉莉;殷慷;施伯樂(lè);;一種新的圖像檢索相關(guān)反饋方法[A];第十九屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2002年
3 陳世亮;李戰(zhàn)懷;閆劍鋒;;一種基于本體描述的空間語(yǔ)義圖像檢索方法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 趙海英;彭宏;;基于最優(yōu)近似反饋的圖像檢索[A];’2004系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2004年
5 許相莉;張利彪;于哲舟;周春光;;基于商空間粒度計(jì)算的圖像檢索[A];第八屆全國(guó)信息隱藏與多媒體安全學(xué)術(shù)大會(huì)湖南省計(jì)算機(jī)學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];2009年
6 李凌偉;周榮貴;劉怡;;基于概念的圖像檢索方法[A];第十九屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2002年
7 楊關(guān)良;李忠杰;徐小杰;;基于代表色的圖像檢索方法研究[A];首屆信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2003年
8 彭瑜;喬奇峰;魏昆娟;;基于多示例學(xué)習(xí)的圖像檢索方法[A];第三屆全國(guó)信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議論文集[C];2007年
9 胡敬;武港山;;基于語(yǔ)義特征的風(fēng)景圖像檢索[A];2009年研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)論文集[C];2009年
10 許天兵;;一種基于語(yǔ)義分類的圖像檢索方法[A];中國(guó)圖象圖形學(xué)會(huì)第十屆全國(guó)圖像圖形學(xué)術(shù)會(huì)議(CIG’2001)和第一屆全國(guó)虛擬現(xiàn)實(shí)技術(shù)研討會(huì)(CVR’2001)論文集[C];2001年
相關(guān)博士學(xué)位論文 前10條
1 崔超然;圖像檢索中自動(dòng)標(biāo)注、標(biāo)簽處理和重排序問(wèn)題的研究[D];山東大學(xué);2015年
2 楊迪;基于內(nèi)容的分布式圖像檢索[D];北京郵電大學(xué);2015年
3 張旭;網(wǎng)絡(luò)圖像檢索關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2014年
4 吳夢(mèng)麟;基于半監(jiān)督學(xué)習(xí)的醫(yī)學(xué)圖像檢索研究[D];南京理工大學(xué);2015年
5 高毫林;基于哈希技術(shù)的圖像檢索研究[D];解放軍信息工程大學(xué);2014年
6 李清亮;圖像檢索中判別性增強(qiáng)研究[D];吉林大學(xué);2016年
7 劉爽;多特征融合圖像檢索方法及其應(yīng)用研究[D];哈爾濱理工大學(xué);2016年
8 程航;密文JPEG圖像檢索研究[D];上海大學(xué);2016年
9 李展;基于多示例學(xué)習(xí)的圖像檢索與推薦相關(guān)算法研究[D];西北大學(xué);2012年
10 郭麗;基于內(nèi)容的商標(biāo)圖像檢索研究[D];南京理工大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 趙鴻;基于尺度不變局部特征的圖像檢索研究[D];華南理工大學(xué);2015年
2 孫劍飛;基于圖像索引的熱點(diǎn)話題檢索方法研究[D];蘭州大學(xué);2015年
3 章進(jìn)洲;圖像檢索中的用戶意圖分析[D];南京理工大學(xué);2015年
4 苗思楊;移動(dòng)圖像檢索中的漸進(jìn)式傳輸方式研究[D];大連海事大學(xué);2015年
5 都業(yè)剛;基于顯著性的移動(dòng)圖像檢索[D];大連海事大學(xué);2015年
6 王夢(mèng)蕾;基于用戶反饋和改進(jìn)詞袋模型的圖像檢索[D];南京理工大學(xué);2015年
7 許鵬飛;基于草圖的海量圖像檢索方法研究[D];浙江大學(xué);2015年
8 馮進(jìn)麗;基于BoF的圖像檢索與行為識(shí)別研究[D];山西大學(xué);2015年
9 喬維強(qiáng);基于低級(jí)特征和語(yǔ)義特征的醫(yī)學(xué)圖像檢索[D];北京理工大學(xué);2015年
10 蔣國(guó)寶;基于內(nèi)容的概念建模和圖像檢索重排序[D];復(fù)旦大學(xué);2014年
,本文編號(hào):2475811
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2475811.html