融合多種搜索策略的差分進(jìn)化大規(guī)模優(yōu)化算法
[Abstract]:Multi-peak, high-dimensional large-scale optimization problem is the current research focus in the field of optimization. In this paper, a large-scale differential evolution optimization algorithm based on multi-search strategies is proposed in the framework of co-evolution algorithm. Based on the idea of decomposition, the algorithm firstly uses the adaptive differential evolution operator to solve the sub-problem locally. Then the stochastic search mechanism based on simulated annealing is introduced to improve the global search ability of the algorithm and the depth search of the solution space is carried out by combining the local search chain. A large-scale optimization standard function is used to test the algorithm. The results show that the proposed algorithm achieves better results in both average and optimal solutions than the existing algorithms.
【作者單位】: 華南理工大學(xué)自動(dòng)化科學(xué)與工程學(xué)院;
【基金】:國家科技重大專項(xiàng)(2014ZX02503-3) 國家自然科學(xué)基金資助項(xiàng)目(61573146) 華南理工大學(xué)中央高校業(yè)務(wù)經(jīng)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015ZZ0100)~~
【分類號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳燕玲;盧建剛;孫優(yōu)賢;;基于免疫原理的差分進(jìn)化[J];控制與決策;2007年11期
2 楊啟文;蔡亮;薛云燦;;差分進(jìn)化算法綜述[J];模式識(shí)別與人工智能;2008年04期
3 許小健;黃小平;錢德玲;;自適應(yīng)加速差分進(jìn)化算法[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2008年01期
4 寧桂英;周永權(quán);;基于優(yōu)進(jìn)策略的新差分進(jìn)化算法動(dòng)力學(xué)模型參數(shù)的估計(jì)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2008年05期
5 譚躍;譚冠政;涂立;;一種新的混沌差分進(jìn)化算法[J];計(jì)算機(jī)工程;2009年11期
6 王培崇;錢旭;王月;虎曉紅;;差分進(jìn)化計(jì)算研究綜述[J];計(jì)算機(jī)工程與應(yīng)用;2009年28期
7 肖術(shù)駿;朱學(xué)峰;;一種改進(jìn)的快速高效的差分進(jìn)化算法[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年11期
8 周蕭;王萬良;徐新黎;;解決作業(yè)車間調(diào)度問題的混合差分進(jìn)化算法[J];輕工機(jī)械;2010年05期
9 王艷宜;;改進(jìn)差分進(jìn)化算法及其應(yīng)用[J];機(jī)械設(shè)計(jì)與研究;2010年05期
10 張照生;羅健旭;;基于差分進(jìn)化算法的模糊神經(jīng)網(wǎng)絡(luò)控制器[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年12期
相關(guān)會(huì)議論文 前5條
1 陸絲馨;肖健梅;王錫淮;;基于改進(jìn)差分進(jìn)化算法的艦船電網(wǎng)重構(gòu)[A];第二十九屆中國控制會(huì)議論文集[C];2010年
2 張倩;李海港;;多目標(biāo)問題的差分進(jìn)化算法研究[A];2009年中國智能自動(dòng)化會(huì)議論文集(第一分冊(cè))[C];2009年
3 劉國帥;楊侃;陳靜;周景舒;周冉;鄭姣;;差分進(jìn)化算法在三峽電站廠內(nèi)經(jīng)濟(jì)運(yùn)行中的應(yīng)用[A];中國水文科技新發(fā)展——2012中國水文學(xué)術(shù)討論會(huì)論文集[C];2012年
4 倪惠康;杜文莉;錢鋒;;基于改進(jìn)差分進(jìn)化算法的PID參數(shù)優(yōu)[A];2009年中國智能自動(dòng)化會(huì)議論文集(第一分冊(cè))[C];2009年
5 雍龍泉;;求解一類多目標(biāo)優(yōu)化問題的極大熵差分進(jìn)化算法[A];2013年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 孫浩;差分進(jìn)化多目標(biāo)優(yōu)化算法及其在鋁熱連軋軋制規(guī)程中應(yīng)用[D];燕山大學(xué);2015年
2 謝宇;差分進(jìn)化的若干問題及其應(yīng)用研究[D];南京理工大學(xué);2015年
3 董峗;差分進(jìn)化算法研究及在港口物流調(diào)度中的應(yīng)用[D];東北大學(xué);2015年
4 葛延峰;有關(guān)智能優(yōu)化算法及應(yīng)用的若干問題研究[D];東北大學(xué);2013年
5 劉榮輝;多階段自適應(yīng)差分進(jìn)化算法及應(yīng)用研究[D];東華大學(xué);2012年
6 王旭;改進(jìn)差分進(jìn)化算法及其在可逆邏輯綜合中的應(yīng)用[D];東華大學(xué);2013年
7 董明剛;基于差分進(jìn)化的優(yōu)化算法及應(yīng)用研究[D];浙江大學(xué);2012年
8 丁青鋒;基于元胞自動(dòng)機(jī)的差分進(jìn)化算法及其在通信系統(tǒng)中的應(yīng)用研究[D];上海大學(xué);2015年
9 徐斌;基于差分進(jìn)化算法的多目標(biāo)優(yōu)化方法研究及其應(yīng)用[D];華東理工大學(xué);2013年
10 解為成;基于局部摸索的差分進(jìn)化算法及其在曲面重建中的應(yīng)用[D];武漢大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 高靜;量子差分進(jìn)化算法在油田開發(fā)中的應(yīng)用研究[D];浙江大學(xué);2015年
2 萬婧;基于離散微粒群算法和混合差分進(jìn)化算法的復(fù)雜生產(chǎn)調(diào)度問題求解[D];昆明理工大學(xué);2015年
3 張轉(zhuǎn);基于差分進(jìn)化算法的混凝土德拜模型的研究[D];長安大學(xué);2015年
4 江華;差分進(jìn)化算法的改進(jìn)及其在K-means聚類算法中的應(yīng)用[D];華中師范大學(xué);2015年
5 任甜甜;差分進(jìn)化算法在反演問題中的研究與應(yīng)用[D];新疆大學(xué);2015年
6 王丹;基于輔助函數(shù)的自適應(yīng)差分進(jìn)化算法研究[D];西安電子科技大學(xué);2014年
7 劉家華;基于進(jìn)化計(jì)算的軋制生產(chǎn)過程操作優(yōu)化算法與系統(tǒng)開發(fā)[D];東北大學(xué);2013年
8 張偉;差分進(jìn)化算法的改進(jìn)研究[D];西安電子科技大學(xué);2014年
9 程菲;膜計(jì)算在數(shù)值優(yōu)化問題中的應(yīng)用研究[D];西華大學(xué);2015年
10 袁文龍;基于控制思想的差分進(jìn)化算法改進(jìn)研究[D];東北大學(xué);2014年
,本文編號(hào):2462313
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2462313.html