基于多傳感器網(wǎng)絡的協(xié)同避障算法研究
[Abstract]:In recent years, China has accelerated the opening of the low-altitude domain, and the application of unmanned aerial vehicles (UAVs) has become more and more common. It is also necessary to avoid collision between UAVs in cluster, so the research on obstacle avoidance of UAV cluster is very important. This paper presents a multi-aircraft cooperative obstacle avoidance algorithm for UAV based on multi-sensor network model. Combined with the characteristics of local cooperation between sensor nodes in multi-sensor networks, the problem of multi-aircraft low-altitude obstacle avoidance is solved. This paper focuses on the cooperative obstacle avoidance algorithm based on multi-sensor networks. The algorithm mainly solves the following four basic problems: 1) how to establish multi-sensor networks when the sensor nodes are likely to collide; 2) how to avoid the sensor node in the multi-sensor network; 3) how to deal with the new sensor node in the process of obstacle avoidance; 4) how to finish the task after the sensor node leaves the network after the obstacle avoidance is completed. After the obstacle avoidance algorithm is put forward, the correctness of the algorithm is verified by simulation. The simulation proves that the algorithm can solve the above four problems, that is, to build a multi-sensor network when the sensor node may collide. By using obstacle avoidance algorithm in multi-sensor networks, each sensor node can avoid obstacles and correctly deal with the obstacle avoidance problem of adding new nodes to the network. After completing the obstacle avoidance task, the sensor node safely leaves the network and continues to complete the task until the task is completed. Finally, in the actual low-altitude application environment, we use multiple rotor UAVs to carry out flight verification, and show the motion paths of each UAV in the ground station. Experiments show that the proposed cooperative obstacle avoidance algorithm based on multi-sensor networks can ensure the safety of UAV in flight. Specifically, compared with the previous research on multi-sensor networks, the main contributions of this paper are as follows: 1) establish a framework of obstacle avoidance based on multi-sensor networks; 2) by calculating the maximum velocity and acceleration of the UAV, the distance between the UAV and the obstacle is always maintained.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:V279;V249;TP212.9
【參考文獻】
相關期刊論文 前10條
1 郭峰;王國勝;呂強;張洋;;基于視覺的多旋翼無人機定位與地圖構建[J];科技導報;2017年07期
2 沈林成;王祥科;朱華勇;付鈺;劉歡;;基于擬態(tài)物理法的無人機集群與重構控制[J];中國科學:技術科學;2017年03期
3 周麗芳;文佳黎;;基于遺傳算法的虛擬足球游戲設計[J];計算機應用與軟件;2017年02期
4 黃如林;梁華為;陳佳佳;趙盼;杜明博;;基于激光雷達的無人駕駛汽車動態(tài)障礙物檢測、跟蹤與識別方法[J];機器人;2016年04期
5 崔寶俠;周鈺雨;段勇;;機器人在未知環(huán)境條件下的動態(tài)避障[J];沈陽工業(yè)大學學報;2016年06期
6 張遜遜;許宏科;朱旭;;低空低速植保無人直升機避障控制系統(tǒng)設計[J];農(nóng)業(yè)工程學報;2016年02期
7 蒙志君;平學壽;陳旭智;;無人直升機三維避障方法及仿真[J];北京航空航天大學學報;2016年08期
8 鄭來芳;孫煒;歐陽明華;李飛;;結(jié)合光流和人工勢場的風管機器人避障方法[J];計算機工程與應用;2016年09期
9 尚鋒;蔣國平;樊春霞;;一種基于混合智能體系統(tǒng)的Flocking算法[J];南京郵電大學學報(自然科學版);2010年04期
10 宋金澤;戴斌;單恩忠;賀漢根;;一種改進的RRT路徑規(guī)劃算法[J];電子學報;2010年S1期
相關碩士學位論文 前1條
1 趙榮齊;基于人工勢場法的機器人路徑規(guī)劃研究[D];山東大學;2008年
,本文編號:2461681
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2461681.html