基于智能手機(jī)面向老年人的行為識別技術(shù)
發(fā)布時間:2019-03-25 20:06
【摘要】:如今智能手機(jī)由于配備了大量的傳感器、計算和存儲資源,使得基于各種傳感器的應(yīng)用出現(xiàn)在各種領(lǐng)域,如個人健康、環(huán)境監(jiān)測、社交網(wǎng)絡(luò)。目前,智能手機(jī)集成了豐富的傳感器,如加速度計,陀螺儀,全球定位系統(tǒng),麥克風(fēng),相機(jī),亮度傳感器,Wi-Fi和藍(lán)牙接口,為人體活動識別提供一個合適的平臺系統(tǒng),也為研究人員提供了更為簡單、方便的傳感器數(shù)據(jù)獲取方案。本文針對集成在智能手機(jī)中的GPS模塊和三軸加速度傳感器,提出了利用GPS速度數(shù)據(jù)結(jié)合人體在活動狀態(tài)下產(chǎn)生的三軸加速度數(shù)據(jù)對老年人的室內(nèi)和室外的行為進(jìn)行實時識別以達(dá)到對老年人的行為監(jiān)護(hù)的目的。本文的重點(diǎn)工作如下:(1)總結(jié)了基于加速度傳感器的行為識別的工作流程及研究方法,對人體行為識別的各個功能模塊分別作了詳細(xì)的介紹。針對如今已經(jīng)普及的智能手機(jī)提出一種基于智能手機(jī)的面向老年人的行為識別方法,該方法基于智能手機(jī)中的加速度傳感器和GPS模塊提出了一種新的行為數(shù)據(jù)模型,并采用該數(shù)據(jù)模型采集人體的行為數(shù)據(jù)。(2)對數(shù)據(jù)的分割進(jìn)行研究,并為本系統(tǒng)選取了合適大小的滑動窗口對人體行為數(shù)據(jù)進(jìn)行分割,隨后列出本系統(tǒng)所使用的特征值。最后本章設(shè)計相應(yīng)的對比實驗證明當(dāng)分類模型采用包含GPS速度特征值的特征向量進(jìn)行訓(xùn)練和識別時相比未包含GPS特征值的特征向量的準(zhǔn)確率要高,特別在人體乘車行為的識別準(zhǔn)確率上有大幅度的提升。(3)在本文提出的基于智能手機(jī)加速度傳感器和GPS模塊的數(shù)據(jù)模型和行為識別方法的基礎(chǔ)上,設(shè)計并實現(xiàn)了人體運(yùn)動模式實時識別系統(tǒng)。系統(tǒng)實現(xiàn)了實時從移動終端接收人體行為數(shù)據(jù)并在后臺處理、分類得出當(dāng)前用戶所處的位置是室內(nèi)還是室外,并且把用戶活動模式歸類為靜坐、站立、行走、跑步、騎車、乘車這6種狀態(tài)。
[Abstract]:Today smart phones are equipped with a large number of sensors, computing and storage resources, making sensor-based applications in a variety of areas, such as personal health, environmental monitoring, social networks. Today, smart phones integrate a wealth of sensors such as accelerometers, gyroscopes, global positioning systems, microphones, cameras, luminance sensors, Wi-Fi and Bluetooth interfaces to provide an appropriate platform for human activity recognition. It also provides a simple and convenient sensor data acquisition scheme for researchers. In this paper, the GPS module and the three-axis acceleration sensor integrated into the smart phone, Using the GPS velocity data and the triaxial acceleration data produced by the human body in the active state, the real-time recognition of the behavior of the elderly in indoor and outdoor is proposed to achieve the purpose of monitoring the behavior of the elderly in order to achieve the purpose of monitoring the behavior of the elderly. The main work of this paper is as follows: (1) the workflow and research methods of behavior recognition based on acceleration sensor are summarized, and the functional modules of human behavior recognition are introduced in detail. Based on the acceleration sensor and GPS module in smart phones, a new behavior data model is proposed, which is based on the smart phone-oriented behavior recognition method for the elderly. The data model is used to collect the human behavior data. (2) the segmentation of the data is studied, and the sliding window of appropriate size is selected to segment the human behavior data, and then the characteristic values used in the system are listed. Finally, a comparative experiment is designed to prove that when the classification model is trained and recognized by the Eigenvectors containing the GPS velocity eigenvalues, the accuracy of the Eigenvectors without the GPS eigenvalues is higher than that of the classification models. Especially, the recognition accuracy of human ride behavior has been greatly improved. (3) on the basis of the data model and behavior recognition method based on smart phone acceleration sensor and GPS module proposed in this paper, A real-time human motion pattern recognition system is designed and implemented. The system realizes real-time receiving the human behavior data from the mobile terminal and processing it in the background, classifies whether the current user's position is indoor or outdoor, and classifies the user's activity mode as sit-in, stand, walk, run, and bike, and classify the user's activity mode as sitting, standing, walking, running, biking. Take a ride in these six states.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.9
本文編號:2447271
[Abstract]:Today smart phones are equipped with a large number of sensors, computing and storage resources, making sensor-based applications in a variety of areas, such as personal health, environmental monitoring, social networks. Today, smart phones integrate a wealth of sensors such as accelerometers, gyroscopes, global positioning systems, microphones, cameras, luminance sensors, Wi-Fi and Bluetooth interfaces to provide an appropriate platform for human activity recognition. It also provides a simple and convenient sensor data acquisition scheme for researchers. In this paper, the GPS module and the three-axis acceleration sensor integrated into the smart phone, Using the GPS velocity data and the triaxial acceleration data produced by the human body in the active state, the real-time recognition of the behavior of the elderly in indoor and outdoor is proposed to achieve the purpose of monitoring the behavior of the elderly in order to achieve the purpose of monitoring the behavior of the elderly. The main work of this paper is as follows: (1) the workflow and research methods of behavior recognition based on acceleration sensor are summarized, and the functional modules of human behavior recognition are introduced in detail. Based on the acceleration sensor and GPS module in smart phones, a new behavior data model is proposed, which is based on the smart phone-oriented behavior recognition method for the elderly. The data model is used to collect the human behavior data. (2) the segmentation of the data is studied, and the sliding window of appropriate size is selected to segment the human behavior data, and then the characteristic values used in the system are listed. Finally, a comparative experiment is designed to prove that when the classification model is trained and recognized by the Eigenvectors containing the GPS velocity eigenvalues, the accuracy of the Eigenvectors without the GPS eigenvalues is higher than that of the classification models. Especially, the recognition accuracy of human ride behavior has been greatly improved. (3) on the basis of the data model and behavior recognition method based on smart phone acceleration sensor and GPS module proposed in this paper, A real-time human motion pattern recognition system is designed and implemented. The system realizes real-time receiving the human behavior data from the mobile terminal and processing it in the background, classifies whether the current user's position is indoor or outdoor, and classifies the user's activity mode as sit-in, stand, walk, run, and bike, and classify the user's activity mode as sitting, standing, walking, running, biking. Take a ride in these six states.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 肖征榮;張麗云;;智能穿戴設(shè)備技術(shù)及其發(fā)展趨勢[J];移動通信;2015年05期
2 杜鵬;;中國人口老齡化現(xiàn)狀與變化[J];中國社會保障;2013年11期
3 梁力;;基于老年人摔倒行為識別模型的計算機(jī)視覺監(jiān)控系統(tǒng)[J];科技通報;2013年10期
4 黃毅;佟曉光;;中國人口老齡化現(xiàn)狀分析[J];中國老年學(xué)雜志;2012年21期
相關(guān)博士學(xué)位論文 前1條
1 薛洋;基于單個加速度傳感器的人體運(yùn)動模式識別[D];華南理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前5條
1 雒靜;老年人跌倒檢測系統(tǒng)的研究[D];上海工程技術(shù)大學(xué);2016年
2 王洪斌;基于三軸加速度傳感器的人體行為識別研究[D];江南大學(xué);2014年
3 張義龍;基于加速度傳感器的人體運(yùn)動狀態(tài)監(jiān)測的研究[D];南京郵電大學(xué);2014年
4 吳忠澤;基于智能移動終端的人體運(yùn)動狀態(tài)監(jiān)測系統(tǒng)的設(shè)計與實現(xiàn)[D];華南理工大學(xué);2013年
5 馬良;基于傳感器的移動平臺行為識別[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號:2447271
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2447271.html
最近更新
教材專著