永磁同步電機(jī)調(diào)速系統(tǒng)預(yù)測(cè)函數(shù)控制的研究
[Abstract]:Permanent magnet synchronous motor (PMSM) has a series of advantages, such as small size, simple structure, high power factor and wide range of speed regulation, which play an increasingly important role in practical application. Therefore, the research on permanent magnet synchronous motor (PMSM) has attracted more and more attention from experts and scholars at home and abroad, and it has also become a hot research topic in AC drive field. With the rapid development of society, the control performance of permanent magnet synchronous motor (PMSM) in AC drive field is also improved. The traditional PI control algorithm is time-varying due to the existence of parameters. Because of the influence of a series of uncertain factors, such as external disturbance and nonlinear characteristic of motor, it is difficult to meet the demand of excellent speed regulation performance of AC speed regulation system. As a new control algorithm, the most obvious advantage of predictive functional control is that the output equation of the control variable is easy to operate, the real-time control computation is small, the tracking performance is good, the speed is good, and the steady-state precision is high. Therefore, it is especially suitable for high performance control of permanent magnet synchronous motor (PMSM). Firstly, aiming at the problems of current loop tracking precision, speed loop control precision and robustness of speed regulation system, under the frame of vector control speed regulation system, Based on the predictive function control theory, the current predictive function controller and the velocity predictive function controller are designed respectively, which effectively improve the tracking precision of the current inner loop and the speed outer loop control precision of the speed regulating system. Due to the influence of load disturbance, parameter uncertainty and other factors, it is easy to produce large prediction error. A nonlinear disturbance observer (NDOB) is designed to estimate the disturbance of the system and make feedforward compensation for the control variables. The robustness of the speed regulation system is improved. Finally, the proposed control strategy is simulated to verify the effectiveness of the method. Secondly, a permanent magnet synchronous motor sliding mode predictive function controller based on NDOB is designed. Based on the predictive function control theory and sliding mode control theory, the current inner loop predictive function controller and the velocity outer loop sliding mode controller are designed respectively. The tracking precision of the current inner loop and the control precision of the speed outer loop are improved effectively. However, the traditional sliding mode control strategy has severe buffeting, which greatly reduces the performance of the system. Therefore, a nonlinear disturbance observer is designed to estimate and compensate the uncertain disturbance of the system. At the same time, the dynamic performance and robustness of the system are improved while reducing the chattering of the system. Finally, the proposed control strategy is simulated to verify the effectiveness of the method. Finally, in order to further verify the effectiveness of the control strategy in this topic, a PMSM vector control system experiment platform based on the DSP chip produced by TI Company in the United States is set up, and the experimental verification is carried out. The effectiveness of the control strategy is verified.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273;TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王輝;薛珍珠;趙留羊;劉紅霞;;基于動(dòng)態(tài)矩陣的永磁同步電機(jī)電流預(yù)測(cè)控制[J];電氣傳動(dòng);2017年04期
2 劉國(guó)海;趙萬(wàn)祥;周華偉;趙文祥;陳鳴;程燃;;基于零序電壓諧波注入式脈寬調(diào)制的五相永磁電機(jī)直接轉(zhuǎn)矩控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2017年05期
3 程啟明;黃偉;程尹曼;徐聰;郭凱;;雙級(jí)矩陣變換器驅(qū)動(dòng)永磁同步電機(jī)的混合非線性控制系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2017年04期
4 林楠;王東;魏錕;張慶湖;易新強(qiáng);;新型混合勵(lì)磁同步電機(jī)的數(shù)學(xué)模型與等效分析[J];電工技術(shù)學(xué)報(bào);2017年03期
5 張虎;張永昌;劉家利;高素雨;;基于單次電流采樣的永磁同步電機(jī)無(wú)模型預(yù)測(cè)電流控制[J];電工技術(shù)學(xué)報(bào);2017年02期
6 盧崢;歐陽(yáng)紅林;孟超;朱思國(guó);;多電平雙Y移30°永磁同步電機(jī)的矢量控制系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2016年22期
7 孟永慶;王健;李磊;王秀麗;羅輝勇;白森戈;;基于雙dq坐標(biāo)變換的M3C變換器的數(shù)學(xué)模型及控制策略研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年17期
8 張勛;劉汝峰;王婷;王廣柱;;一種基于雙同步坐標(biāo)變換的開環(huán)鎖相方法[J];電工技術(shù)學(xué)報(bào);2016年12期
9 郭磊磊;張興;楊淑英;謝震;;一種改進(jìn)的永磁同步發(fā)電機(jī)模型預(yù)測(cè)直接轉(zhuǎn)矩控制方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年18期
10 陸原;胡丙輝;張軍偉;高祺;;基于SVPWM調(diào)制的三段式算法研究[J];電力系統(tǒng)保護(hù)與控制;2016年06期
相關(guān)博士學(xué)位論文 前2條
1 周長(zhǎng)攀;雙三相永磁同步電機(jī)驅(qū)動(dòng)及容錯(cuò)控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 高宏偉;五相永磁同步電機(jī)驅(qū)動(dòng)及容錯(cuò)控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
,本文編號(hào):2442241
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2442241.html