基于在線辨識(shí)與優(yōu)化的自適應(yīng)PID控制算法的工程實(shí)現(xiàn)
[Abstract]:With climate change, environmental problems become increasingly prominent, and the task of "returning a blue sky to a city" is becoming increasingly serious. In order to meet the goal of saving energy and reducing energy consumption, thermal process control in thermal power plants is becoming more and more demanding. In the face of increasingly complex control systems, how to achieve stable, accurate and fast control has become one of the hot research topics. On-line identification uses real-time data to update the model of the controlled object, so as to facilitate the control operation which is more in line with the field operation conditions. For many systems with time-varying, large delay and high coupling degree, simple PID can not fully meet the control quality requirements. Therefore, adaptive PID control is implemented through an object model based on real-time data. It is of great significance to improve the control effect of the system. This method can identify and adjust the controller parameters on line, and has the advantages of simple structure, stability and reliability. For the purpose of engineering application, an adaptive PID control algorithm based on online identification and optimization is studied in this paper. Firstly, the principle and relation of different adaptive control methods are introduced and simulated. Then, the common models of system identification and their basic identification methods are introduced. The simulation results show that particle swarm optimization algorithm is feasible in engineering. In this paper, an idea of on-line identification is proposed. The model transfer function of water injection amount to the main steam temperature is identified under different loads, and the relationship between the model parameters and the controller parameters is obtained by selecting the data in accordance with the requirements. The adaptive PID control algorithm based on on-line identification and optimization is constructed by modifying the controller parameters automatically. The simulation results show that the algorithm is feasible. Finally, Siemens SIMATIC S7-300 PLC is used to realize the control algorithm.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓璞;于浩;曹喜果;孫明;;基于經(jīng)驗(yàn)整定公式的自適應(yīng)PID控制算法研究[J];計(jì)算機(jī)仿真;2015年03期
2 韓璞;袁世通;;基于大數(shù)據(jù)和雙量子粒子群算法的多變量系統(tǒng)辨識(shí)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年32期
3 趙海森;杜中蘭;劉曉芳;王慶;;基于遞推最小二乘法與模型參考自適應(yīng)法的鼠籠式異步電機(jī)轉(zhuǎn)子電阻在線辨識(shí)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年30期
4 袁世通;韓璞;孫明;;基于大數(shù)據(jù)的多變量系統(tǒng)建模方法研究[J];系統(tǒng)仿真學(xué)報(bào);2014年07期
5 韓璞;袁世通;張金營(yíng);;超超臨界鍋爐主汽溫控制系統(tǒng)的建模研究[J];計(jì)算機(jī)仿真;2013年12期
6 劉毅;金福江;高增梁;;時(shí)變過(guò)程在線辨識(shí)的即時(shí)遞推核學(xué)習(xí)方法研究[J];自動(dòng)化學(xué)報(bào);2013年05期
7 董澤;丁方;桑士杰;;基于PSO算法的1000MW機(jī)組主汽溫系統(tǒng)辨識(shí)[J];電力科學(xué)與工程;2012年12期
8 傅籬;;我國(guó)先進(jìn)控制技術(shù)應(yīng)用中的問(wèn)題與對(duì)策[J];科技創(chuàng)業(yè)月刊;2011年16期
9 黃宇;韓璞;劉長(zhǎng)良;李永玲;;改進(jìn)量子粒子群算法及其在系統(tǒng)辨識(shí)中的應(yīng)用[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年20期
10 韓璞;呂玲;張倩;董澤;;基于經(jīng)驗(yàn)整定公式的熱工系統(tǒng)控制器參數(shù)智能優(yōu)化[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
相關(guān)博士學(xué)位論文 前4條
1 袁世通;1000MW超超臨界機(jī)組建模理論與方法的研究[D];華北電力大學(xué);2015年
2 楊武;時(shí)變結(jié)構(gòu)模態(tài)參數(shù)的時(shí)域辨識(shí)方法及在線辨識(shí)技術(shù)研究[D];北京理工大學(xué);2015年
3 任燕燕;基于智能計(jì)算的非線性系統(tǒng)辨識(shí)算法研究及其應(yīng)用[D];華北電力大學(xué);2014年
4 王維博;粒子群優(yōu)化算法研究及其應(yīng)用[D];西南交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前5條
1 陳林海;基于控制歷史的自適應(yīng)PID控制方法及其在熱工過(guò)程中的應(yīng)用[D];重慶大學(xué);2013年
2 孔學(xué)森;模糊自適應(yīng)PID對(duì)三容水箱液位控制的仿真與試驗(yàn)研究[D];燕山大學(xué);2012年
3 張學(xué)燕;神經(jīng)網(wǎng)絡(luò)自適應(yīng)PID控制器的研究與仿真[D];貴州大學(xué);2008年
4 張磊;時(shí)滯系統(tǒng)的辨識(shí)與控制[D];北京化工大學(xué);2007年
5 喻婭婭;控制系統(tǒng)在線閉環(huán)辨識(shí)與性能評(píng)價(jià)方法的研究[D];華北電力大學(xué)(河北);2005年
,本文編號(hào):2376172
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2376172.html