機(jī)載陀螺穩(wěn)定平臺(tái)的自抗擾控制算法研究
[Abstract]:As a typical servo control system, gyro stabilized platform has been widely used in high technology fields such as missile, ship, airborne, aerospace and so on. With the demand of modern war, the precision of gyroscope stabilization platform is higher and higher. The traditional PID control method can not meet the demand of the control system. Therefore, by studying the modeling of control system, friction analysis and improvement of ADRC algorithm, this paper improves the immunity and tracking characteristics of ADRC. The stability accuracy of gyroscope stabilized platform is greatly improved. Auto-disturbance rejection control (ADRC) technology is a new control strategy. It has the advantages of independent of the precise model of the controlled system, simple algorithm and good robustness. It can be used to estimate and compensate all kinds of disturbances in the controlled system in real time. This is a classic control technology does not have. In this paper, the airborne gyroscope stabilized platform with two axes and four frames is used as the controlled object, and the related theory and simulation research are carried out by using the ADRC method. The gyroscope stabilized platform is in the low-speed working environment in most cases, and the friction interference is especially serious in this environment, so this paper does not consider the influence of gyro noise and other interference factors on the control system. The friction disturbance and the model error of the system are reduced to the total disturbance of the system by using active disturbance rejection control, and the total disturbance is estimated in real time, and the control quantity is dynamically compensated to improve the control performance of the closed-loop system. The simulation results show that the ADRC system has the advantages of fast response speed, strong anti-jamming ability and high steady-state precision. The innovation of this paper is to improve the nonlinear function fal () used in traditional ADRC to smooth continuous function bas (), in the whole real number domain. The improved ADRC is applied to the airborne gyroscope stabilized platform system.
【學(xué)位授予單位】:長(zhǎng)春理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李殿起;段勇;;用跟蹤微分器實(shí)現(xiàn)機(jī)器人自抗擾控制[J];兵工學(xué)報(bào);2016年09期
2 焦姣姣;張興華;;永磁同步電機(jī)調(diào)速系統(tǒng)的自抗擾控制器設(shè)計(jì)[J];微電機(jī);2015年11期
3 魏偉;戴明;李嘉全;毛大鵬;柏旭光;孫敬輝;;航空光電穩(wěn)定平臺(tái)的自抗擾控制系統(tǒng)[J];光學(xué)精密工程;2015年08期
4 董存會(huì);練星;武曉輝;;線性跟蹤微分器跟蹤干擾信號(hào)的研究[J];紡織高;A(chǔ)科學(xué)學(xué)報(bào);2014年04期
5 瞿永飛;叢爽;;陀螺穩(wěn)定平臺(tái)速度環(huán)的離散自抗擾控制[J];電子技術(shù);2014年06期
6 朱倚嫻;陸源;許江寧;程向紅;;一種陀螺穩(wěn)定平臺(tái)自適應(yīng)模糊-PID復(fù)合控制方法[J];中國(guó)慣性技術(shù)學(xué)報(bào);2014年03期
7 劉思超;;陀螺穩(wěn)定平臺(tái)振動(dòng)漂移性能研究[J];戰(zhàn)術(shù)導(dǎo)彈技術(shù);2014年02期
8 劉希;孫秀霞;郝震;劉宇坤;;最速跟蹤微分器的一種新型離散形式[J];信息與控制;2013年06期
9 徐琦;孫明瑋;陳增強(qiáng);張德賢;;內(nèi)?刂瓶蚣芟聲r(shí)延系統(tǒng)擴(kuò)張狀態(tài)觀測(cè)器參數(shù)整定[J];控制理論與應(yīng)用;2013年12期
10 吳丹;趙彤;陳懇;;快速刀具伺服系統(tǒng)自抗擾控制的研究與實(shí)踐[J];控制理論與應(yīng)用;2013年12期
相關(guān)博士學(xué)位論文 前2條
1 丁策;機(jī)載光電穩(wěn)定平臺(tái)的分?jǐn)?shù)階控制研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2013年
2 黃浦;自抗擾控制技術(shù)在航空相機(jī)鏡筒控制系統(tǒng)中的應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2011年
相關(guān)碩士學(xué)位論文 前6條
1 舒駿逸;兩軸四框架穩(wěn)定跟蹤平臺(tái)伺服控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京理工大學(xué);2016年
2 呂明月;風(fēng)力發(fā)電變槳距自抗擾控制技術(shù)研究及其參數(shù)整定[D];燕山大學(xué);2015年
3 初e,
本文編號(hào):2372865
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2372865.html