高分辨率道路遙感影像中震害信息的提取
[Abstract]:The damage of earthquake will not only cause serious damage to social economy and environment, but also threaten the safety of life. The first time to obtain the disaster situation after the earthquake will be helpful for the rescue command department to draw up the rescue work plan, thus reducing the loss and threat to the minimum. However, the earthquake caused road collapse, fracture and other damage, and secondary disasters caused serious road obstruction, burial and other conditions, resulting in rescue workers, rescue vehicles can not enter the disaster area, rescue work will not be able to begin. In recent years, with the improvement of spatial resolution of remote sensing images and the continuous updating of sensors, it is easier for human to detect geographical information. The remote sensing technology can provide the road damage degree, earthquake damage distribution and other information to the traffic emergency repair department in time, which is of great significance to reduce the impact of disasters and rescue casualties. Remote sensing systems are constrained by time, spectrum, space and resolution in obtaining information, which makes it difficult to accurately observe and record complex and rich geographic information, and is also subject to the atmosphere when acquiring observational data, It is inevitable that there are some errors due to the influence of the complexity of clouds and regions. In this paper, the quadratic polynomial is used for geometric correction of distortion sources and smoothing of coherent enhanced anisotropic diffusion model. High quality remote sensing images are obtained and reliable basic data are extracted for subsequent information. According to the different extraction of remote sensing information, the scale parameters of the segmentation are also different. When the selection of segmentation scale is unreasonable, the problems of "undersegmentation", "over-segmentation" and "edge mismatch" will be caused. Firstly, the fractal network evolution method is used to segment the original image on a small scale. Then, using the global searching ability of PSO, the optimal initial clustering center is determined from the presegmented small scale objects, and the objective function with object spatial information and object correlation information is established when clustering and merging small scale objects. In this paper, the segmentation experiments are carried out under different segmentation scales, and the comparison and quantitative evaluation of the proposed algorithm are carried out with eCognition Developer 8.7 software and watershed algorithm. The experimental results show that the segmentation effect of the algorithm is better, and the segmentation results adapted to different scale objects can be obtained, and the over-dependence of multi-scale segmentation method on scale parameters is reduced. In the process of fuzzy classification of segmented objects, the paper analyzes the information of damaged road features, and introduces the weight coefficients according to the different features in the classification, thus increasing the weight of the main, well-differentiated features. And reduce the weight of secondary features. The experimental results of remote sensing images show that the classification accuracy of different features with different weights is higher than that of classification with the same weights.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周愛(ài)霞;余莉;馮徑;張雪艷;;基于面向?qū)ο蠓椒ǖ母叻直媛蔬b感影像道路提取方法研究[J];測(cè)繪與空間地理信息;2017年02期
2 楊理臣;盧寧;樊光潔;郭鵬;;青海玉樹(shù)7.1級(jí)地震災(zāi)后重建地區(qū)房屋地震易損性研究[J];地震工程學(xué)報(bào);2016年S2期
3 趙妍;張景發(fā);姚磊華;;基于面向?qū)ο蟮母叻直媛蔬b感建筑物震害信息提取與評(píng)估[J];地震學(xué)報(bào);2016年06期
4 謝翠容;代偵勇;楊洋;;改進(jìn)型算法的高分辨率遙感影像道路災(zāi)害信息提取[J];測(cè)繪與空間地理信息;2016年09期
5 李強(qiáng);張景發(fā);;不同特征融合的震后損毀建筑物識(shí)別研究[J];地震研究;2016年03期
6 吳文歡;于宏;趙英俊;陸冬華;伊丕源;;基于面向?qū)ο蟮母叻直媛蔬b感影像目標(biāo)信息提取[J];世界核地質(zhì)科學(xué);2016年02期
7 陳立澤;申旭輝;王輝;洪順英;荊鳳;;我國(guó)高分辨率遙感技術(shù)在地震研究中的應(yīng)用[J];地震學(xué)報(bào);2016年03期
8 董文;沈占鋒;程希萌;;基于高分辨率遙感目標(biāo)特征庫(kù)的地震災(zāi)情快速評(píng)估方法[J];地球信息科學(xué)學(xué)報(bào);2016年05期
9 王一帆;翟銀鳳;;高分辨率道路影像提取的研究現(xiàn)狀[J];科技創(chuàng)新與應(yīng)用;2015年12期
10 王露;劉慶元;;高分辨率遙感影像多尺度分割中最優(yōu)尺度選取方法綜述[J];測(cè)繪與空間地理信息;2015年03期
相關(guān)碩士學(xué)位論文 前5條
1 石振杰;基于面向?qū)ο蟮倪b感技術(shù)巖性識(shí)別研究[D];昆明理工大學(xué);2016年
2 林棟;高分辨率遙感影像空間特征提取及面向?qū)ο蠓诸?lèi)技術(shù)研究[D];解放軍信息工程大學(xué);2015年
3 孫軍;基于支持向量機(jī)的遙感圖像幾何校正算法研究[D];西安科技大學(xué);2011年
4 魏飛鳴;基于對(duì)象信息的遙感影像分類(lèi)研究[D];電子科技大學(xué);2008年
5 周春艷;面向?qū)ο蟮母叻直媛蔬b感影像信息提取技術(shù)[D];山東科技大學(xué);2006年
,本文編號(hào):2350453
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2350453.html