基于改進(jìn)粒子濾波的微弱信號(hào)檢測(cè)與跟蹤
[Abstract]:In recent years, weak signal detection and tracking technology has been widely used in industry, traffic, national defense and other fields, but with the higher accuracy of detection and tracking, the difficult problem of weak signal separation has become increasingly prominent. Based on this, a pre-detection tracking method based on improved particle filter is proposed to accurately track weak targets at low signal-to-noise ratio (SNR). Firstly, this paper discusses the advantages and disadvantages of the two tracking methods before and after detection, and models the observation model and the target motion model of the passive sensor. The Bayesian estimation and particle filter theory under the framework of Bayesian estimation are introduced in detail, and the superiority of particle filter detection before tracking method is introduced, which provides a theoretical basis for further research. Secondly, the traditional particle filter detection before tracking algorithm is introduced, and the model is verified. However, due to the defects of the traditional algorithm itself, the particle distribution is uneven and the diversity is insufficient, so several commonly used improved algorithms are introduced. On the basis of the improved algorithm, the crossover and mutation operations in evolutionary computation are introduced into Monte Carlo algorithm, and the Metropolis-Hastings (MH) resampling method is introduced in the process of resampling. To some extent, the algorithm improves the lack of particle diversity and reduces the running time of the algorithm. The simulation results show that the efficiency and tracking accuracy of the improved quasi-Monte Carlo intelligent particle filter algorithm are greatly improved. Finally, aiming at the problem of detecting and tracking weak targets with uniform acceleration and turning motion, a multi-model combined modeling method is proposed based on the improved quasi-Monte Carlo intelligent particle filter algorithm. On this basis, an improved Quasi-Monte Carlo intelligent particle filter interactive multi-model detection pre-tracking algorithm is proposed to optimize the model. The simulation results show that the improved algorithm can reduce the number of particles to a certain extent and accurately track the weak targets with uniform acceleration and turn motion under the premise of ensuring the tracking accuracy. It is proved that the improved quasi-Monte Carlo intelligent particle filter algorithm is effective and reliable for weak target detection and tracking.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212.9;TN713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳偉強(qiáng);陳軍;張闖;宋立國(guó);譚卓理;;基于智能粒子濾波的多傳感器信息融合算法[J];計(jì)算機(jī)應(yīng)用;2016年12期
2 劉威;趙文杰;李成;徐忠林;李婷;;粒子濾波理論框架及在目標(biāo)跟蹤中的應(yīng)用[J];自動(dòng)化與儀器儀表;2016年03期
3 秦占師;張智軍;曹曉英;陳穩(wěn);;基于SVM-UPF的雷達(dá)弱小目標(biāo)檢測(cè)前跟蹤算法[J];火力與指揮控制;2016年03期
4 劉霞;龍飛;張延升;;雷達(dá)機(jī)動(dòng)目標(biāo)跟蹤無(wú)源定位優(yōu)化研究[J];計(jì)算機(jī)仿真;2016年03期
5 閆懷仁;楊慕升;;基于改進(jìn)的Hough變換的直線提取算法[J];紅外技術(shù);2015年11期
6 郭云飛;唐學(xué)大;駱吉安;邵根富;;一種基于QMC-APF的檢測(cè)前跟蹤算法[J];現(xiàn)代雷達(dá);2015年02期
7 邊旭;李江勇;;基于粒子濾波的TBD算法研究[J];激光與紅外;2015年01期
8 汲清波;王飛祥;謝宇;;基于RF5的紅外弱小目標(biāo)跟蹤系統(tǒng)的實(shí)時(shí)性改進(jìn)方法[J];應(yīng)用科技;2014年05期
9 張永軍;;機(jī)動(dòng)目標(biāo)靜態(tài)多模型算法[J];電腦知識(shí)與技術(shù);2014年02期
10 吳瑕;陳建文;鮑拯;趙志國(guó);;混合估計(jì)多模粒子濾波的機(jī)動(dòng)弱目標(biāo)檢測(cè)前跟蹤算法[J];控制與決策;2014年03期
相關(guān)碩士學(xué)位論文 前9條
1 張浩;低空目標(biāo)探測(cè)雷達(dá)高速目標(biāo)檢測(cè)與跟蹤技術(shù)研究與實(shí)現(xiàn)[D];電子科技大學(xué);2016年
2 夏玫;基于雷達(dá)輔助知識(shí)的微弱目標(biāo)跟蹤算法研究[D];電子科技大學(xué);2015年
3 戴石禮;微弱信號(hào)的定位與跟蹤技術(shù)研究[D];電子科技大學(xué);2015年
4 唐學(xué)大;基于粒子濾波的機(jī)動(dòng)弱目標(biāo)檢測(cè)前跟蹤算法研究[D];杭州電子科技大學(xué);2015年
5 張峰瑞;粒子濾波TBD及并行實(shí)現(xiàn)技術(shù)研究[D];電子科技大學(xué);2014年
6 蘇金洲;基于粒子濾波的檢測(cè)前跟蹤算法研究及在GPU平臺(tái)上的實(shí)現(xiàn)[D];電子科技大學(xué);2013年
7 孫星;基于粒子濾波的弱小目標(biāo)檢測(cè)前跟蹤算法研究[D];西安電子科技大學(xué);2013年
8 張曉東;基于蒙特卡羅算法的移動(dòng)機(jī)器人自定位技術(shù)研究[D];沈陽(yáng)理工大學(xué);2011年
9 張惠娟;基于貝葉斯濾波的先跟蹤后檢測(cè)算法研究[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):2323659
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2323659.html