一種基于灰預(yù)測理論的混合蛙跳算法
發(fā)布時(shí)間:2018-11-05 21:03
【摘要】:為提高混合蛙跳算法在優(yōu)化問題求解中的性能,提出一種基于灰預(yù)測理論的改進(jìn)混合蛙跳算法。該算法首先將基本算法的進(jìn)化模式進(jìn)行調(diào)整,強(qiáng)化了進(jìn)化過程中全局信息的交換;之后引入移動(dòng)步長變異算子,根據(jù)進(jìn)化過程的不同階段和利用灰預(yù)測理論獲得進(jìn)化過程中最優(yōu)解進(jìn)步速度,并借鑒模糊控制思想對(duì)該變異算子進(jìn)行控制,進(jìn)而實(shí)現(xiàn)移動(dòng)步長的自適應(yīng)調(diào)整。采用6個(gè)標(biāo)準(zhǔn)測試函數(shù),與基本算法和已有改進(jìn)算法進(jìn)行性能對(duì)比分析,證明了改進(jìn)后的混合蛙跳算法在收斂精度、收斂速度和收斂成功率方面的優(yōu)越性及灰預(yù)測理論在算法改進(jìn)領(lǐng)域中的可行性。最后,將改進(jìn)算法應(yīng)用于10 k V油浸式配電變壓器優(yōu)化設(shè)計(jì)工作中,驗(yàn)證了該改進(jìn)算法的實(shí)用性。
[Abstract]:In order to improve the performance of hybrid leapfrog algorithm in solving optimization problems, an improved hybrid leapfrog algorithm based on grey prediction theory is proposed. Firstly, the evolutionary model of the basic algorithm is adjusted to enhance the exchange of global information in the evolution process. Then the moving step size mutation operator is introduced. According to the different stages of the evolution process and the grey prediction theory, the optimal solution progress speed is obtained, and the fuzzy control theory is used to control the mutation operator. Then the adaptive adjustment of mobile step size is realized. By using six standard test functions, the performance of the improved hybrid leapfrog algorithm is compared with that of the basic algorithm and the existing improved algorithm, and the convergence accuracy of the improved hybrid leapfrog algorithm is proved. The advantages of convergence rate and convergence success rate and the feasibility of grey prediction theory in the field of algorithm improvement. Finally, the improved algorithm is applied to the optimization design of 10 kV oil-immersed distribution transformer, and the practicability of the improved algorithm is verified.
【作者單位】: 河北工業(yè)大學(xué)電磁場與電器可靠性省部共建重點(diǎn)實(shí)驗(yàn)室;
【基金】:河北省自然科學(xué)基金(E2016202134) 河北省人社廳項(xiàng)目(A2013007001) 河北省科學(xué)技術(shù)研究與發(fā)展項(xiàng)目(13210129) 河北省高等學(xué)校創(chuàng)新團(tuán)隊(duì)領(lǐng)軍人才培育計(jì)劃項(xiàng)目(LJRC003)資助
【分類號(hào)】:TP18
本文編號(hào):2313451
[Abstract]:In order to improve the performance of hybrid leapfrog algorithm in solving optimization problems, an improved hybrid leapfrog algorithm based on grey prediction theory is proposed. Firstly, the evolutionary model of the basic algorithm is adjusted to enhance the exchange of global information in the evolution process. Then the moving step size mutation operator is introduced. According to the different stages of the evolution process and the grey prediction theory, the optimal solution progress speed is obtained, and the fuzzy control theory is used to control the mutation operator. Then the adaptive adjustment of mobile step size is realized. By using six standard test functions, the performance of the improved hybrid leapfrog algorithm is compared with that of the basic algorithm and the existing improved algorithm, and the convergence accuracy of the improved hybrid leapfrog algorithm is proved. The advantages of convergence rate and convergence success rate and the feasibility of grey prediction theory in the field of algorithm improvement. Finally, the improved algorithm is applied to the optimization design of 10 kV oil-immersed distribution transformer, and the practicability of the improved algorithm is verified.
【作者單位】: 河北工業(yè)大學(xué)電磁場與電器可靠性省部共建重點(diǎn)實(shí)驗(yàn)室;
【基金】:河北省自然科學(xué)基金(E2016202134) 河北省人社廳項(xiàng)目(A2013007001) 河北省科學(xué)技術(shù)研究與發(fā)展項(xiàng)目(13210129) 河北省高等學(xué)校創(chuàng)新團(tuán)隊(duì)領(lǐng)軍人才培育計(jì)劃項(xiàng)目(LJRC003)資助
【分類號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王新;李婧;;基于灰理論的電機(jī)故障診斷預(yù)測[J];煤礦機(jī)電;2008年04期
相關(guān)碩士學(xué)位論文 前1條
1 吳旭;基于灰預(yù)測網(wǎng)絡(luò)控制系統(tǒng)的研究[D];安徽工程大學(xué);2016年
,本文編號(hào):2313451
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2313451.html
最近更新
教材專著