基于紅外視頻的機(jī)器人夜間視覺三維顯示研究
[Abstract]:In the field of robot application, many operations in bad environment are usually carried out at night without light. The range of night vision and the ability of scene recognition are directly related to the task execution ability of robot. In night mode, infrared imaging system is usually used to obtain night scene images. Infrared images are characterized by low signal-to-noise ratio (SNR), low contrast and lack of depth sense. The restoration of 3D models of scene or object from night infrared video is a hot topic in the field of computer vision. It needs to integrate computer science, signal processing and other scientific knowledge, as well as in visual navigation, military affairs, etc. Industry and other fields have a very broad application prospects. Therefore, it is of great significance to carry out 3D scene reconstruction for night infrared video. The main content of this paper is divided into three parts: the first part is the research background significance of this topic and the overview of the existing basic theory and methods of 3D reconstruction algorithm; In the second part, the camera calibration algorithm, infrared video preprocessing algorithm and direct and sparse vision odometer are introduced. In the third part, infrared video scene is reconstructed based on direct method and sparse method. The innovation of this paper lies in the realization of 3D scene reconstruction of monocular infrared video for the first time. The reconstruction algorithm adopts direct and sparse visual mileometer. Firstly, the inner parameters of thermal imager are obtained by calibrating the infrared thermal imager. Then the direct and sparse visual odometer models are constructed, the front end of the visual odometer performs the tasks of frame management and point management, and the total photometric error is optimized by sliding window and Gao Si Newton iteration. All the variables dependent on the direct and sparse visual odometer models are calculated to complete the tasks of locating the thermal imager and building the map. The experimental results show that this method can reconstruct monocular infrared video in real time and accurately.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈振一;孫韶媛;趙海濤;;基于PP-MRF模型的單目車載紅外圖像三維重建[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
2 何h?;達(dá)飛鵬;;置信度傳播和區(qū)域邊緣構(gòu)建的立體匹配算法[J];中國(guó)圖象圖形學(xué)報(bào);2011年11期
3 尹傳歷;劉冬梅;宋建中;;改進(jìn)的基于圖像分割的立體匹配算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2008年06期
4 周秀芝;王潤(rùn)生;;基于像元集的置信傳遞立體匹配[J];中國(guó)圖象圖形學(xué)報(bào);2008年03期
5 徐青;王敬東;李鵬;李洪海;;基于圖像分割的快速立體匹配算法[J];計(jì)算機(jī)工程;2006年22期
6 彭啟民,賈云得;一種基于最小割的稠密視差圖恢復(fù)算法[J];軟件學(xué)報(bào);2005年06期
7 張旭明,徐濱士,董世運(yùn);用于圖像處理的自適應(yīng)中值濾波[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年02期
8 孟曉橋,胡占義;攝像機(jī)自標(biāo)定方法的研究與進(jìn)展[J];自動(dòng)化學(xué)報(bào);2003年01期
9 張宇,王希勤,彭應(yīng)寧;自適應(yīng)中心加權(quán)的改進(jìn)均值濾波算法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年09期
10 張健新,段發(fā)階,鐘明,葉聲華;用于三維尺寸檢測(cè)的雙目視覺傳感器[J];計(jì)量學(xué)報(bào);1999年02期
相關(guān)博士學(xué)位論文 前3條
1 周駿;多視圖圖像三維重建若干關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2013年
2 郭龍?jiān)?計(jì)算機(jī)視覺立體匹配相關(guān)理論與算法研究[D];南京理工大學(xué);2009年
3 趙顏利;計(jì)算機(jī)視覺三維重建若干技術(shù)研究[D];南京理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 王潔;成像目標(biāo)虛擬圓特征及其應(yīng)用[D];西安電子科技大學(xué);2013年
2 戴嘉境;基于多幅圖像的三維重建理論及算法研究[D];上海交通大學(xué);2012年
3 王貽術(shù);基于單目視覺的障礙物檢測(cè)與三維重建[D];浙江大學(xué);2007年
4 佘彥杰;基于多幅圖像序列的三維重建[D];吉林大學(xué);2006年
,本文編號(hào):2313312
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2313312.html